以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:57 、訪客IP:13.58.191.60
姓名 王裕碩(Yu-Shuo Wang) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 單光子放射顯微鏡之空間解析度分析與雙螺旋重建
(Spatial Resolution Analysis and Double Helix Reconstruction of Single Photon Emission Microscope)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2029-7-1以後開放) 摘要(中) 醫學影像為現今輔助診斷病灶不可或缺的一個工具,在研究核子醫學
影像中,建構更高空間解析度的影像擷取設備或是重建出更清晰的物體 影
像為重要的研究方向。本研究以單光子放射顯微鏡 Single Photon Emission
Microscope, SPEM 作為研究儀器,此為單光子放射電腦斷層掃描系統
Single Photon Emission Computed Tomography, SPECT) 的一個分支,擁有較
高的空間解析度,專門用於小動物造影。本論文將利用 傅立葉串擾矩陣
(Fo urier Crosstalk Matrix, FCM 分析影像系統矩陣的空間解析度,再以多針
孔取樣完整性分析此影像系統矩陣的物空間取樣,並以不同軌道 的取樣進
行物體影像重建。
影像系統的成像矩陣將三維物空間的單位體素點透過成像系統計算找
到該體素在偵測器上面的投影點,稱為影像系統矩陣 H 矩陣 )),他的特性會
是決定這套系統成敗的關鍵,該系統的點響應函數 Point R e sponse Function,
PRF 是否過寬,調制傳遞函數 Modulation Transfer Function, MTF) 會不會太
低,將會影響此影像系統的空間解析度。本研究以 F ourier Crosstalk Matrix
分析 單光子放射顯微鏡系統的影像系統矩陣的 P R F 與 MTF 並取得矩 陣的
混疊,分析在重建時是否產生取樣不足。並將透過圓形軌道、單螺旋軌道與
雙螺旋軌道的取樣方式進行比較。
取樣完整性分析方法為過去本實驗室針對
SPEM 系統所開發的針孔設
計分析方法,在製作針孔擋板前提早取得最佳針孔的分布位置,以利降低開
發成本。本研究中將以影像系統矩陣開發的環境回推物體的空間取樣,比較
單螺旋軌道與圓形軌道取樣的差異,以及在相同取樣角度下雙螺旋與單螺
旋軌道的取樣差異。摘要(英) Medical imaging
has now become an i ndispensable tool for assisting in the
diagnosis of diseases or physical problems In researching of nuclear medicine
imaging, getting higher spatial resolution devices or reconstructing clearer object
images are important research directions. This study uses the Single Photon
Emission Microscope (SPEM) system as the research equipment. SPEM is a high
resolution branch of Single Photon Emission Computed Tomography (SPECT)
systems specifically designed for imaging small animals. We used the F ourier
Crosstalk Matrix to analyze the characteristics of the imaging system matrix, used
the s ampling completeness coeffici ent (SCC) to analyze the object space sampling,
and finally reconstructed the object images with different imaging orbits.
The imaging system matrix, also called the
H matrix, contains the point
source response on the detector of each voxel in the three di mensional object
space. It characterizes the spatial resolution of the imaging system, whether the
point response function (PRF) is narrow or wide and the m odulation transfer
function (MTF) is high or low. Therefore, the study analyzed the imaging system
m atrix of SPEM through the Fourier Crosstalk Matrix to find the equivalent MTF
and to compare the aliasing characteristics of circular orbit and single helical orbit.
The
S CC analysis was developed by this laboratory for the SPEM system
before, aimed at fin ding the best pinhole distribution before starting experiments
to reduce the development cost. This study utilized SCC to compare the sampling
completeness between the circular orbit, single helical orbit, and double helical
orbit.
Finally, we used phantom
reconstructions to assess the imaging performance
of SPEM, including a three point phantom and Defrise phantoms. All images
were reconstructed by 20 iterations of Ordered Subset Expectation Maximization
(OSEM). The three point phantom is to validate the c orrectness of the H matrix
of double helical orbit, which was rewritten from the H matrix of circular orbit
In Defrise phantom reconstructions, we designed three different phantoms.
The first one occupies a cylinder of 20 mm diameter and 20 mm height, and the
circular disks are 2 mm thick with 2 mm separation. The second one occupies a
cylinder of 31 mm diameter and 31 mm height, and the circular disks are 2 mm
thick with 2 mm separation. The third one occupies a cylinder of 20 mm diameter
and 20 mm height , and the circular disks are 1 mm thick with 1 mm separation.
The size of the second phantom, 31 mm, is the Field of view (FOV) size o f the
circular orbit H matrix. The reconstruction results of the second phantom showed
that with the same number of projec tions, a single helical orbit complemented the
sampling incompleteness of the circular orbit and got better reconstruction images,
and a double helical orbit further improved the sampling uniformity關鍵字(中) ★ 單光子放射顯微鏡
★ 傅立葉串擾矩陣
★ 雙螺旋軌道重建關鍵字(英) ★ SPEM
★ Fourier Crosstalk Matrix
★ Double-Helix Reconstruction論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xv
第一章 緒論 1
1.1 論文背景 1
1.2 研究目的 2
1.3 論文架構 3
第二章 單光子放射顯微鏡架構與基本原理 4
2.1 核子醫學影像 4
2.1.1 正子放射斷層掃描系統(Positron Emission Tomography, PET) 5
2.1.2 單光子放射電腦斷層掃描系統(Single Photon Emission Computed Tomography, SPECT) 8
2.1.3 單光子放射顯微鏡系統(Single Photon Emission Microscope, SPEM) 11
2.2 準直儀(Collimator) 12
2.3 閃爍晶體偵測器(Scintillation Detector) 15
2.4 圖伊條件 (Tuy’s Condition) 18
2.5 螺旋軌道螺距限制 23
2.5.1 平行光束電腦斷層系統螺距限制 23
2.5.2 扇形光束電腦斷層系統螺距限制 24
2.5.3 錐形光束電腦斷層系統螺距限制 26
2.5.4 單光子放射顯微鏡系統螺距限制 28
第三章 單光子放射顯微鏡的空間解析度與影像重建演算法 29
3.1 影像系統矩陣 29
3.2 系統空間解析度與Fourier Crosstalk Matrix 32
3.3 多針孔取樣完整性 40
3.4 影像重建演算法 44
3.4.1 最大可能性之期望值最大化演算法(Maximum Likelihood Expectation Maximization, MLEM) 46
3.4.2 序列子集之期望值最大化演算法(Ordered Subset Expectation Maximization, OSEM) 48
3.4.3 螺旋軌道影像重建演算法(Helical-Orbit Imaging Reconstruction Algorithm) 49
3.4.4 雙螺旋軌道影像重建演算法(Double-Helix-Orbit Imaging Reconstruction Algorithm) 53
第四章 影像重建與演算結果 55
4.1 Fourier Crosstalk Matrix結果 57
4.2 多針孔取樣完整性比較 83
4.3 影像重建結果 93
4.3.1 三點假體影像重建 94
4.3.2 Defrise假體影像重建 120
4.4 影像重建與演算結論 189
第五章 結論與未來展望 197
5.1 結論 197
5.2未來展望 198
參考文獻 199參考文獻 [1] C.-C.Wu,“Geometric Parameter Fitting and Imaging Model Improvement of Single Photon Emission Microscope,” 國立中央大學, 2021.
[2] E. M. C. Revilla, “System Calibration and Helical Reconstruction of Single Photon Emission Microscope,” National Central University, 2018.
[3] W.-X. Lin, “單光子放射顯微鏡之針孔穿隧模擬與系統矩陣建立,” 國立中央大學, 2023.
[4] W. C. Röntgen, “Über eine neue Art von Strahlen,” 1895.
[5] B.-Y. Huang, “System Calibration and Imaging Model Construction of Single Photon Emission Microscope,” National Central University, 2017.
[6] M. N. Wernick, and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT: Elsevier Science, 2004.
[7] C. Wu, F. Li, G. Niu, and X. Chen, “PET imaging of inflammation biomarkers,” Theranostics, vol. 3, no. 7, pp. 448-66, 2013.
[8] M. A. Reis, J. Mejia, I. R. Batista, M. R. Barboza, S. A. Nogueira, J. Wagner, F. R. Cabral, P. M. Davoglio, V. C. Abílio, G. Fu, N. Li, L. J. Meng, M. C. Shih, C. T. Chen, E. Amaro Junior, and R. A. Bressan, “SPEM: a state-of-the-art instrument for high resolution molecular imaging of small animal organs,” Einstein (Sao Paulo), vol. 10, no. 2, pp. 209-15, Apr-Jun, 2012.
[9] Y.-S. W. Wei-Xiang Lin, Li-Hung Sung, Yi-Chun Chen, “Pinhole Tunneling Simulation and System Matrix Construction of Single Photon Emission Microscope,” in Optics & Photonics Taiwan International Conference, 2023.
[10] A. Dhanasopon, C. Levin, A. Foudray, P. Olcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera,” Nuclear Science, IEEE Transactions on, vol. 52, pp. 1439-1446, 11/01, 2005.
[11] H. H. B. Matthew A. Kupinski, Small-Animal SPECT Imaging, 2005.
[12] H. K. Tuy, “An Inversion Formula for Cone-Beam Reconstruction,” SIAM Journal on Applied Mathematics, vol. 43, no. 3, pp. 546-552, 1983.
[13] C.-C. Chang, “Pinhole Pattern Design of Single Photon Emission Microscope System by the Analysis of Sampling Completeness and Field of View,” 國立中央大學, 2021.
[14] G. L. Zeng, and G. T. Gullberg, “Helical SPECT using axially truncated data,” IEEE Transactions on Nuclear Science, vol. 46, no. 6, pp. 2111-2118, 1999.
[15] K. J. M. Harrison H. Barrett, Foundations of Image Science, 2004.
[16] M.-W. Lee, and Y.-C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014/02/11/, 2014.
[17] J. W. Goodman, Introduction to Fourier Optics, 2004.
[18] H. Kim, L. R. Furenlid, M. J. Crawford, D. W. Wilson, H. B. Barber, T. E. Peterson, W. C. Hunter, Z. Liu, J. M. Woolfenden, and H. H. Barrett, “SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays,” Med Phys, vol. 33, no. 2, pp. 465-74, Feb, 2006.
[19] H. H. Barrett, and H. Gifford, “Cone-beam tomography with discrete data sets,” Phys Med Biol, vol. 39, no. 3, pp. 451-76, Mar, 1994.
[20] Y.-C. Chen, “System Calibration and Imaging Reconstruction for a New Small-Animal SPECT System,” 2006.
[21] B. Liu, J. Bennett, G. Wang, B. De Man, K. Zeng, Z. Yin, P. Fitzgerald, and H. Yu, “Completeness map evaluation demonstrated with candidate next-generation cardiac CT architectures,” Med Phys, vol. 39, no. 5, pp. 2405-16, May, 2012.
[22] 黃文正, “基於取樣完整性評估螺旋式多針孔 Micro-SPECT之掃描軌跡設計,” 光電科學與工程學系, 國立中央大學, 2015.
[23] L. A. Shepp, and Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[24] R. Frieden, Probability, Statistical Optics, and Data Testing: A Problem Solving Approach: Springer Berlin Heidelberg, 2001.
[25] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans Med Imaging, vol. 13, no. 4, pp. 601-9, 1994.
[26] D. S. Lalush, and B. M. Tsui, “Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT,” J Nucl Med, vol. 41, no. 4, pp. 737-44, Apr, 2000.
[27] R. E. W. Rafael C. Gonzalez Digital Image Processing, 2018.指導教授 陳怡君(Yi-Chun Chen) 審核日期 2024-7-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare