博碩士論文 111226051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.111.42
姓名 林雅晴(Ya-Ching Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高能脈衝磁控濺鍍緩衝層對矽基氮化鎵磊晶表面形貌及極性研究
(Study on the Surface Morphology and Polarity of GaN Epitaxy on Silicon Substrates with HiPIMS Buffer Layer)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 目前氮化鎵磊晶薄膜在矽基板的製程方式為以有機金屬氣相沉積(Metal-organic Chemical Vapor Deposition, MOCVD)生長單層或多層且很厚的氮化鋁薄膜於基板上作為緩衝層,本研究利用高功率脈衝磁控濺鍍(High Power Impulse Magnetron Sputtering,HiPIMS)的製程方式沉積100nm氮化鎵緩衝層在矽基板上,透過高能量且高電漿密度的方式生長氮化鎵緩衝層,再利用MOCVD沉積氮化鎵磊晶層,以氮化鎵緩衝層以改善晶格不匹配的問題。
  在研究過程中,固定MOCVD磊晶層製程溫度為1095°C、壓力200mbar,以調整緩衝層參數為主,探討緩衝層的溫度、厚度、充放能時間對磊晶層的影響,也探討了氮電漿前處理能初步改善基板回蝕的問題,以及調整緩衝層氮氣氬氣比與磊晶層五三比;量測部分是使用由X射線繞射儀(X-ray Diffractometer,XRD)分析其結晶繞射(FWHM)與強度來判斷緩衝層及磊晶層晶格排列一致性與結晶品質,使用原子力顯微鏡(Atomic Force Microscopy ,AFM)分析粗糙度,並透過掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)分析薄膜表面與側面結構,最後使用氫氧化鉀(KOH)蝕刻表面再使用表面輪廓儀(Alpha-Step)來做初步判斷極性。
  最後可以發現加了氮化鎵緩衝層後可以讓MOCVD磊晶層從約10 μm的氮化鎵非連續膜晶粒改善成約2μm的氮化鎵連續膜。對矽基板做表面氮電漿前處理之後再鍍氮化鎵緩衝層,由SEM分析出,有氮電漿前處理之磊晶層由許多三角錐狀的晶柱變為六方晶柱,幫助氮化鎵生長磊晶層時更能有橫向生長的能力,XRD觀察到優化後的氮化鎵磊晶層半高寬從0.24 degree改善到0.18 degree,也從SEM觀察出表面形貌變得較連續;從KOH蝕刻後觀察SEM的表面形貌及蝕刻階高可以發現有氮極性的現象,因此未來必須再繼續解決表面平整之問題,進而提升氮化鎵直接磊晶在矽基板上的品質。
摘要(英) Currently, the most common process method for GaN-on-Si epi layer gallium nitride (GaN) is a single-layered or multilayered thick aluminum nitride (AlN) buffer layer grown on Si substrate by using Metal-organic chemical vapor deposition (MOCVD). In this study, we employed high-power impulse magnetron sputtering (HiPIMS) to deposit 100-nm GaN buffer layer on silicon substrates under high energy and high density of plasma. Then, MOCVD has been used to deposit a GaN epitaxial layer. This approach aims to improve lattice mismatch problem.
  In this research, the MOCVD epitaxial layer was maintained at a process temperature of 1095 °C and a pressure of 200 mbar. The primary focus was adjusting the buffer layer parameters, including process temperature, buffer-layer thickness, and discharge time of HiPIMS, to explore their effects on the epitaxial layer. Additionally, we investigated the improvement of substrate back-etching through nitrogen plasma pretreatment, as well as adjusting the Nitrogen-Argon ratio during the buffer layer process and the V/III ratio during the epitaxial layer process. For measurements, we utilized X-ray diffractometer (XRD) to analyze the Full Width at Half Maximum (FWHM) and intensity of the crystal diffraction, assessing the consistency of lattice alignment and the crystalline quality of the buffer and epitaxial layers. Atomic Force Microscopy (AFM) was employed to determine the surface roughness. Scanning Electron Microscopy (SEM) was used to examine the surface and cross-sectional structures of the films. Finally, Alpha-Step was used to determine polarity assessment after KOH etching.
  The results revealed that incorporating the GaN buffer layer significantly improved the MOCVD-grown epitaxial layer, transforming it from approximately 10 μm GaN discontinuous film grains to a continuous film of about 2 μm. Before the GaN buffer layer process, a nitrogen plasma pretreatment on the silicon substrate was performed. It shows that the process with the nitrogen plasma pretreatment transformed the epitaxial layer from numerous triangular crystal columns to hexagonal crystal columns, enhancing the lateral growth of the GaN epitaxial layer. XRD results showed an improvement in the FWHM of the optimized GaN epitaxial layer from 0.24 degree to 0.18 degree. SEM analysis also confirmed the improved surface morphology. After KOH etching, SEM examination revealed a nitrogen polarity phenomenon. Consequently, the surface smoothness of the film has to be improved to further enhance the quality of direct GaN epitaxy on silicon substrates.
關鍵字(中) ★ 氮化鎵
★ 緩衝層
★ 高功率脈衝磁控濺鍍
★ 有機金屬氣相沉積
關鍵字(英) ★ GaN
★ buffer layer
★ HiPIMS
★ MOCVD
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-3研究動機 4
第二章 基礎理論 6
2-1氮化鎵的基本性質 6
2-2氮化鎵之緩衝層介紹 7
2-2-1氮化鎵緩衝層介紹 7
2-2-2氮化鎵緩衝層比較 8
2-3應力與差排現象 8
2-4磁控濺鍍原理介紹 10
2-5高功率脈衝磁控濺鍍原理介紹 11
2-6有機金屬化學氣相沉積原理介紹 12
第三章 實驗架構與設備及量測儀器介紹 14
3-1製程設備介紹 14
3-1-1多腔式真空濺鍍系統 14
3-1-2 高功率脈衝磁控濺鍍系統 15
3-2 緩衝層與磊晶層製作流程 17
3-2-1實驗流程圖 17
3-2-2氮化鎵緩衝層與磊晶層製作流程 17
3-3 量測儀器介紹 19
3-3-1 X-ray繞射儀 (X-ray diffractometer, XRD) 19
3-3-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 21
3-3-3 原子力顯微鏡(Atomic Force Microscope, AFM) 22
3-3-4 穿透式電子顯微鏡(Transmission electron microscope, TEM) 23
3-3-5 表面輪廓儀 (Alpha-Step) 24
第四章 實驗結果 25
4-1 緩衝層不同沉積方式之分析 25
4-2 改變緩衝層厚度對於氮化鎵磊晶層之分析 27
4-3 不同緩衝層製程溫度對於氮化鎵磊晶層之分析 31
4-4 探討氮電漿前處理 35
4-4-1 氮電漿前處理對於氮化鎵磊晶層之影響 35
4-4-2 調控氮電漿前處理時間 39
4-4-3 基板氮電漿前處理後改變緩衝層厚度之分析 42
4-5 HIPIMS充放能時間對於氮化鎵磊晶層之分析 45
4-5-1 改變放能時間 45
4-5-2 改變佔空比 48
4-6 緩衝層製程氮氣比例與氮化鎵磊晶層五三比之分析 52
4-6-1 調整緩衝層製程氮氣比例 52
4-6-2 調整磊晶層五三比 55
4-7 氮化鎵極性分析 58
第五章 結論與未來研究 64
5-1 結論 64
5-2 未來研究 65
參考文獻 66
參考文獻 [1] Dimitrov, R., et al. "Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire." Journal of Applied Physics 87(7), pp. 3375-3380, 2000.
[2] Prabaswara, Aditya, et al. "Review of GaN thin film and nanorod growth using magnetron sputter epitaxy." Applied Sciences 10(9), pp. 3050, 2020
[3] Grzegory, I., and S. Porowski. "Properties, processing and applications of Gallium Nitride and Related Semiconductors." EMIS Datareview Series 23, pp. 359-367, 1999.
[4] Medjdoub, Farid, ed. Gallium nitride (GaN): physics, devices, and technology. CRC Press, 2017.
[5] Liu, L., and James H. Edgar. "Substrates for gallium nitride epitaxy." Materials Science and Engineering: R: Reports 37.3 61-127. (2002).
[6] Johnson, Warren C., J. B. Parson, and M. C. Crew. "Nitrogen compounds of gallium. iii." The journal of physical chemistry 36(10), pp. 2651-2654, 2002.
[7] Willardson, Robert K., et al. Gallium-Nitride (GaN) II. Vol. 57. Academic Press, 1998.
[8] Hovel, H.J.; Cuomo, J.J. “Electrical and Optical Properties of rf-Sputtered GaN and InN.’’Appl. Phys. Lett , 20, 71–73 ,1972.
[9] Zembutsu, S.; Kobayashi, M. “The growth of c-axis-oriented GaN films by D.C.-biased reactive sputtering.’’, Thin Solid Films ,129 ,289–297 ,1985.
[10] Puychevrier, N.; Menoret, “M. Synthesis of III–V semiconductor nitrides by reactive cathodic sputtering.’’ ThinSolid Films , 36, 141–145,1976.
[11] Amano, Hiroshi, et al. "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer." Applied Physics Letters 48.5: 353-355 (1986).
[12] S. Nakamura “ GaN Growth Using GaN Buffer Layer ” , J. Appl. Phys. , 30 , 1705 , 1991
[13] Kouznetsov, Vladimir, et al. "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology 122(2-3), pp. 290-293, 1999.
[14] Dadgar, Armin, et al. "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness." Japanese Journal of Applied Physics 39(11B), L1183, 2000.
[15] Tripathy, Sudhiranjan, et al. "AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si (111)." Applied Physics Letters 101.8 : 4-8 (2012).
[16] Piquette, E. C., et al. "Effect of buffer layer and III/V ratio on the surface morphology of GaN grown by MBE." MRS Online Proceedings Library (OPL) 537: G3-77(1998).
[17] Wong, Man Hoi, et al. "N-polar GaN epitaxy and high electron mobility transistors." Semiconductor Science and Technology 28.7: 074009 (2013).
[18] Sugahara, Tomoya, Jeong-Sik Lee, and Kohji Ohtsuka. "Role of AlN/GaN Multilayer in Crack-Free GaN Layer Growth on 5” φ Si (111) Substrate." Japanese journal of applied physics 43.12B: L1595(2004).
[19] Ehiasarian, A. P., et al. "High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization." Applied Physics Letters 100.11 (2012).
[20] Nakamura, Shuji, et al. "High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes." Applied Physics Letters 67.13: 1868-1870 (1995).
[21] 林麗娟,「X 光繞射原理及其應用」,工業材料,86,100-109,2000
[22] 吳政鴻,「參雜量對氮化銦鎵/氮化鎵多層量子井光學與結構特性之研究」,國立義守大學電子工程學系,碩士論文,2009
[23] Kelly, Peter J., and R. Derek Arnell. "Magnetron sputtering: a review of recent developments and applications." Vacuum 56(3), pp. 159-172, 2000.
[24] Helmersson, Ulf, et al. "Ionized physical vapor deposition (IPVD): A review of technology and applications." Thin solid films 513(1-2), pp. 1-24, 2006.
[25] Sarakinos, Kostas, Jones Alami, and Stephanos Konstantinidis. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and coatings technology 204(11), pp. 1661-1684, 2010.
[26] Gudmundsson, Jon Tomas, et al. "High power impulse magnetron sputtering discharge." Journal of Vacuum Science & Technology A 30.3 pp. 25-40 (2012).
[27] Sarakinos, Kostas, Jones Alami, and Stephanos Konstantinidis. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and coatings technology 204.11: 1661-1684(2010).
[28] Gilioli, Edmondo, and Francesco Pattini. "Growth of oxide thin films for energy devices by Pulsed Electron Deposition."Stringfellow, Gerald B. Organometallic vapor-phase epitaxy: theory and practice. Elsevier, 1999.
[29] Stringfellow, G. B. "Fundamental aspects of organometallic vapor phase epitaxy." Materials Science and Engineering: B 87.2: 97-116 (2001).
[30] Thompson, Alan G. "MOCVD technology for semiconductors." Materials Letters 30.4: 255-263 (1997).
[31] What Is HiPIMS?" Semicore, www.semicore.com/news/93-what-is-hipims. Accessed 27 June 2024.
[32] 原子力顯微镜原理(atomic force microscope, AFM),取自http://www.pelttech.com/item_10_221_0.shtml
[33] 林昆霖,「肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡」,國家奈米元件實驗室奈米通訊,第20期,34-38頁,2013
[34] 張守諒。「氮化矽層抑制氮化鎵成長於(111)矽基板之回熔蝕刻現象研究」。碩士論文,國立交通大學材料科學與工程學系所,2014。<https://hdl.handle.net/11296/f9x595>。
[35] Yi, M. S., et al. "Effects of growth temperature on GaN nucleation layers." Applied Physics Letters 75.15: 2187-2189(1999).
[36] Cheng, Kun, et al. "Epitaxial growth of high-quality GaAs on Si (001) using ultrathin buffer layers." AIP Advances 14.3 pp.10-14(2024).
[37] Park, Jae-Seong, et al. "Heteroepitaxial growth of III-V semiconductors on silicon." Crystals 10.12: 1163(2020).
[38] Yi, M. S., et al. "Effects of growth temperature on GaN nucleation layers." Applied Physics Letters 75.15: 2187-2189 (1999).
[39] Tuan, Thi Tran Anh, et al. "Effect of temperature dependence on electrical characterization of pn GaN diode fabricated by RF magnetron sputtering." Materials Sciences and Applications 6.9: 809-817(2015).
[40] Schiaber, Ziani S., et al. "Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering." Journal of Applied Physics 114.18 (2013).
[41] Takemoto, Kikurou, et al. "Growth of GaN directly on Si (111) substrate by controlling atomic configuration of Si surface by metalorganic vapor phase epitaxy." Japanese journal of applied physics 45.5L: L478 (2006).
[42] 電漿前處理(Plasma Treatment Technology)原理簡述,取自: https://www.atom-semi.com/article_detail/22.htm
[43] Nakada, Yoshinobu, Igor Aksenov, and Hajime Okumura. "GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si (111) surfaces by plasma-assisted molecular beam epitaxy." Applied physics letters 73.6: 827-829(1998).
[44] Wang, Z. T., et al. "Atomistic study of GaN surface grown on Si (111)." Applied Physics Letters 87.3 (2005).
[45] Arifin, Pepen, et al. "Plasma-assisted MOCVD growth of non-polar GaN and AlGaN on Si (111) substrates utilizing GaN-AlN buffer layer." Coatings 12.1: 94 (2022).
[46] 鄭崇汶。「利用脈衝磁控濺鍍磊晶成長氮化鎵薄膜於藍寶石基板之研究」。碩士論文,國立中央大學光電科學與工程學系,2021。<https://hdl.handle.net/11296/6h8pk4>。
[47] Majchrzak, Dominika, et al. "Influence of pulsed Al deposition on quality of Al-rich Al (Ga) N structures grown by molecular beam epitaxy." Surfaces and Interfaces 27, pp. 101560, 2021.
[48] 陳治光。「利用脈衝磁控濺鍍磊晶成長低溫氮化鎵磊晶層於矽基板之研究」。碩士論文,國立中央大學光電科學與工程學系,2022。
[49] Viloan, Rommel Paulo B., et al. "Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge." Plasma Sources Science and Technology 29(12), pp. 125013, 2020.
[50] Suliali, Nyasha J., et al. "Ti thin films deposited by high-power impulse magnetron sputtering in an industrial system: Process parameters for a low surface roughness." Vacuum 195: 110698 (2022).
[51] Schneider, J. M., L. Hultman, et al. "Surface roughness and crystalline structure of CrN thin films grown by HiPIMS." Surface and Coatings Technology, vol. 203, issues 15-16, 2009,
[52] Ehiasarian, A. P., et al. "The influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films." Journal of Applied Physics 101.5: 054301 (2007).
[53] Schneider, J. M., et al. "The role of process parameters on the growth and properties of high power impulse magnetron sputtered CrN films." Surface and Coatings Technology 204.6-7: 947-951 (2009).
[54] Zhao, Xiaoli, et al. "Effect of pulsed off-times on the reactive HiPIMS preparation of zirconia thin films." Vacuum 118, pp. 38-42, 2015.
[55] Lundin, Daniel, Tiberiu Minea, and Jon Tomas Gudmundsson, eds. "High power impulse magnetron sputtering: fundamentals, technologies, challenges and applications." :04-07(2019).
[56] Okada, Hiroshi, et al. "Investigation of HCl-based surface treatment for GaN devices." AIP Conference Proceedings. 1709(1), AIP Publishing LLC, 2016.
[57] Zhou, X. W., and H. N. G. Wadley. "Atomistic simulations of low
energy ion assisted vapor deposition of metal multilayers." Journal of Applied Physics 87(5), pp. 2273-2281, 2000.
[58] Ren, Yongjie, et al. "Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film." Materials 17.10: 2311(2024).
[59] Monish, Mohammad, Shyam Mohan, and S. S. Major. "Effect of nitrogen partial pressure on the microstructure of epitaxial GaN films grown by rf magnetron sputtering." AIP Conference Proceedings. Vol. 2115. No. 1. AIP Publishing, 2019.
[60] 涂如欽、蘇炎坤、李玟良. "有機金屬化學氣相沉積法在成長砷化銦-銻化鎵第二類超晶格上之應用." 真空科技, vol. 8, no. 3-4, 1995, pp. 1-34. https://tpl.ncl.edu.tw/NclService/JournalQuery.
[61] Tanide, Atsushi, et al. "Roles of atomic nitrogen/hydrogen in GaN film growth by chemically assisted sputtering with dual plasma sources." ACS omega 5(41), pp. 26776-26785, 2020.
[62] Junaid, Muhammad, et al. "Effects of N2 partial pressure on growth, structure, and optical properties of GaN nanorods deposited by liquid-target reactive magnetron sputter epitaxy." Nanomaterials 8.4: 223(2018).
[63] Sanchez-Garcia, M. A., et al. "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)." Journal of crystal growth 183.1-2: 23-30(1998).
[64] Zhang, Yuxuan, et al. "Laser‐assisted metal–organic chemical vapor deposition of gallium nitride." physica status solidi (RRL)–Rapid Research Letters 15.6: 2100202 (2021).
[65] 陳書雋。「氮極性面氮化鎵基板之磷酸蝕刻活化能與表面形貌特性研究」。碩士論文,國立交通大學電子物理系所,2013。<https://hdl.handle.net/11296/59p3qh>。
[66] Zhuang, Dejin, and J. H. Edgar. "Wet etching of GaN, AlN, and SiC: a review." Materials Science and Engineering: R: Reports 48.1: 1-46(2005).
[67] Jung, Younghun, et al. "Chemical etch characteristics of N-face and Ga-face GaN by phosphoric acid and potassium hydroxide solutions." Journal of The Electrochemical Society 159.2: H117 (2011).
[68] Li, Dongsheng, et al. "Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy." Journal of Applied Physics 90.8: 4219-4223 (2001).
[69] Mohanty, Subhajit, Kamruzzaman Khan, and Elaheh Ahmadi. "N-polar GaN: Epitaxy, properties, and device applications." Progress in Quantum Electronics 87: 100450 (2023).
[70] Singisetti, Uttam, Man Hoi Wong, and Umesh K. Mishra. "High-performance N-polar GaN enhancement-mode device technology." Semiconductor science and technology 28.7: 074006 (2013).
[71] Zolper, J. C., et al. "Morphology and photoluminescence improvements from high‐temperature rapid thermal annealing of GaN." Applied physics letters 68.2: 200-202 (1996).
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明