博碩士論文 111226045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.133.135.8
姓名 林崇瑋(Chung-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用體積全像光學元件之擴瞳光導效率提升技術
(Efficiency Enhancement of Exit Pupil Expansion Light Guide with Volume Holographic Optical Element)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 歐規之高對比度近遠燈設計與雜散光分析
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究★ 費奈爾透鏡之光學效率與雜散光分析
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析★ 多波繞射疊加訊號法之參考光位置誤差分析
★ 使用方解石於數位全像顯微系統的深度測量系統★ 陣列式燈具光學特性快速量測之研究
★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究的目的是利用一片體積全像光學元件(Volume Holographic Optical Elements, VHOE)製作的穿透式光柵色散元件,取代原有的白光LED,以提升由兩片VHOE所組成之光導系統繞射效率。通過優化設計,不僅提高光導系統輸入輸出的能量轉換效率,還減少所有光學元件的能量損耗。
當光源在光導中傳遞時,由於體積全像片的特性,入射到全像片的角度公差會對應到不匹配的波長,從而產生濾波效應。為了解決此問題,本研究使用相位疊加法(VOHIL)理論模型來模擬光在光導系統中傳輸後的頻譜分布。根據模擬結果,將進行色散元件的模擬與設計,確保色散元件提供的頻譜分布與視野皆與光導系統匹配,以達到最佳能量利用率。此外,考慮到光在各元件之間的能量損耗,我們重新設計了色散元件,用以提高收光效率並縮短各元件之間的距離。最後,通過改變白光LED的發光寬度,降低色散元件的繞射頻寬,從而進一步優化光學系統的效率。
摘要(英) The study aims to use a transmission grating dispersion element made from a volume holographic optical element (VHOE) to replace the original white LED, enhancing the diffraction efficiency of a lightguide system composed of two VHOEs. Through optimized design, we not only improve the system′s efficiency but also minimize energy loss across all optical components.
When light travels through the optical guide, the volume holographic plates cause filtering effects due to changes in the incident angle. To solve this, we used Volume Hologram Being an Integrator of the Lights Emitted from Elementary Light Source (VOHIL) model to simulate the spectral distribution in the system and designed the dispersion element to match the optical guide system for optimal performance. Additionally, we redesigned the dispersion element to improve light collection efficiency and reduce component distances, minimizing energy loss. Finally, we optimized system efficiency by adjusting the emitting area of the white LED to reduce the diffraction bandwidth of the dispersion element.
關鍵字(中) ★ 體積全像
★ 相位疊加法
★ 體積全像色散元件
★ 光機系統效率
關鍵字(英) ★ volume holographic
★ VOHIL model
★ system efficiency enhancement
論文目次 目錄 I
摘要 IV
Abstract V
致謝 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 背景介紹 1
1-2 全像術之文獻回顧 2
1-3 研究動機 3
1-4 論文前置研究 4
1-5 論文架構 5
第二章 實驗理論 6
2-1 全像術 6
2-2 薄全像與厚全像 11
2-3 布拉格條件 15
2-4 耦合波理論 19
2-5 相位疊加法 33
2-6 相位疊加法之三維解析解 38
第三章 峰值波長與頻譜分布模擬 43
3-1 光導系統之輸入輸出波長與頻寬分布 43
3-2 建立色散元件(VHOEd)之輸出波長分布 48
第四章 實驗結果驗證 54
4-1 光導系統設計 56
4-1-1 光導系統之紀錄與影像重建 57
4-1-2 驗證光導系統輸出頻譜分布 65
4-2 針對輸入輸出效率優化之VHOEd設計 73
4-2-1 VHOEd設計方法 73
4-2-2 VHOEd之紀錄與重建 74
4-2-3 驗證VHOEd繞射頻譜分布 78
4-2-4 白光系統繞射效率量測 82
4-2-5 VHOEd系統繞射效率量測 86
4-2-6 VHOEd系統影像結果 88
4-3 緊湊型VHOEd系統設計 90
4-3-1 光機系統參數與繞射頻寬關係 90
4-3-2 緊湊型VHOEd設計 94
4-3-3 緊湊型VHOEd拍攝與重建 96
4-3-4 驗證緊湊型VHOEd繞射頻譜分布 100
4-3-5 緊湊型白光系統效率量測 103
4-3-6 緊湊型VHOEd系統效率量測 106
4-3-7 緊湊型VHOEd系統影像重建 110
4-4 光源寬度對繞射頻寬與系統效率影響 112
4-4-1 基於不同狹縫寬度之頻寬量測 112
4-4-2 基於不同狹縫寬度之效率量測 116
第五章 結論 120
參考資料 123
中英文名詞對照表 128
參考文獻 1. J. P. Rolland, I. Kaya, K. P. Thompson, and O. Cakmakci, “57.3: Invited Paper: Head‐worn Displays‐Lens Design,” SID Symposium Digest of Technical Papers, 41(1), 855-858 (2010).
2. B. Foote and J. Melzer, “A history of helmet mounted displays,” presented at Display Technologies and Applications for Defense, Security, and Avionics IX; and Head- and Helmet-Mounted Displays XX, SPIE 9470, U.S. (2015).
3. J. E. Melzer and K. Moffitt, Head-Mounted Displays: Designing for the User, 1st eds. (McGraw-Hill, New York, 1997).
4. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani and M. Ivkovic,” Augmented reality technologies, systems and applications,” Multimedia tools and applications, 51, 341-377 (2011).
5. R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34-47 (2001).
6. Azuma, T. Ronald, “A survey of augmented reality,” Presence: teleoperators & virtual environments, 6(4), 355-385 (1997).
7. B. Furht, Handbook of augmented reality, 1st eds. (Springer Science & Business Media, Berlin, 2011.)
8. C. Anthes, R. J. García-Hernández, M. Wiedemann and D. Kranzlmüller, “State of the art of virtual reality technology,” Presented at 2016 IEEE aerospace conference, Big Sky, Montana, USA, 1-19 (2016)
9. G. C. Burdea and P. Coiffet, Virtual reality technology, 2nd eds. (John Wiley & Sons, Hoboken, 2003).
10. F. P. Brooks, “What′s real about virtual reality?,” IEEE Computer graphics and applications, 19(6), 16-27 (1999).
11. J. Vince, Introduction to virtual reality, 1st eds. (Springer Science & Business Media, Berlin, 2011.)
12. F. Biocca and M. R. Levy, Communication in the age of virtual reality. 1st eds. (Routledge, London, 2013.)
13. C. Flavián, S. Ibáñez-Sánchez and C. Orús, “The impact of virtual, augmented and mixed reality technologies on the customer experience,” Journal of business research, 100, 547-560 (2019).
14. M. Speicher, B. D. Hall and M. Nebeling, “What is mixed reality?,” Presented at 2019 CHI conference on human factors in computing systems, Glasgow, Scotland, UK, 1-15 (2019).
15. S. Rokhsaritalemi, A. adeghi-Niaraki and S. M. Choi, “A review on mixed reality: Current trends, challenges and prospects,” Applied Sciences, 10(2), 636 (2020).
16. M. Billinghurst and H. Kato, “Collaborative mixed reality,” Presented at the first international symposium on mixed reality (ISMR), Yokohama, Japan, 261-284 (1999).
17. Ferrin, F. J. “Update on optical systems for military head-mounted displays,” Helmet-and Head-Mounted Displays IV, SPIE, 3689, 178-185 (1999).
18. S. Cao, K. Nandakumar, R. Babu and B. Thompson, “Game play in virtual reality driving simulation involving head-mounted display and comparison to desktop display,” Virtual Reality, 24(3), 503-513 (2020).
19. G. Tao, B. Garrett, T. Taverner, E. Cordingley and C. Sun, “Immersive virtual reality health games: a narrative review of game design.” Journal of NeuroEngineering and Rehabilitation, 18, 1-21 (2021).
20. F. Pallavicini, A. Pepe and M. E. Minissi, “Gaming in virtual reality: What changes in terms of usability, emotional response and sense of presence compared to non-immersive video games?,” Simulation & Gaming, 50(2), 136-159 (2019).
21. J. Radianti, T. A. Majchrzak, J. Fromm and I. Wohlgenannt, “ A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda,” Computers & education, 147, 103778 (2020).
22. B. Wu, X. Yu and X. Gu, “Effectiveness of immersive virtual reality using head‐mounted displays on learning performance: A meta‐analysis,” British journal of educational technology, 51(6), 1991-2005 (2020).
23. L. Jensen and F. Konradsen, “A review of the use of virtual reality head-mounted displays in education and training,” Education and Information Technologies, 23, 1515-1529 (2018).
24. W. Fang, L. Chen, T. Zhang, C. Chen, Z. Teng and L. Wang, “Head-mounted display augmented reality in manufacturing: A systematic review,” Robotics and Computer-Integrated Manufacturing, 83, 102567 (2023).
25. H. Zhang, “Head-mounted display-based intuitive virtual reality training system for the mining industry,” International Journal of Mining Science and Technology, 27(4), 717-722 (2017).
26. P. Zimmermann, Virtual reality aided design. A survey of the use of VR in automotive industry. In Product engineering: tools and methods based on virtual reality, 1st eds. 277-296, (Springer, Netherlands, 2008).
27. D. Saldana, M. Neureither, A. Schmiesing, E. Jahng, L. Kysh, S. C. Roll and S. L. Liew, “Applications of head-mounted displays for virtual reality in adult physical rehabilitation: a scoping review,” The American Journal of Occupational Therapy, 74(5), 1-15 (2020).
28. S. Barteit, L. Lanfermann, T. Bärnighausen, F. Neuhann and C. Beiersmann, “Augmented, mixed, and virtual reality-based head-mounted devices for medical education: systematic review,” JMIR serious games, 9(3), 29080 (2021).
29. R. Rahman, M. E. Wood, L. Qian, C. L. Price, A. A. Johnson and G. M. Osgood, “Head-mounted display use in surgery: a systematic review,” Surgical innovation, 27(1), 88-100 (2020).
30. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
31. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52(10), 1123-1130 (1962).
32. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
33. Y. W. Yu and C. C. Sun, “Method for reading and writing with holographic system and holographic storage system,” U.S. Patent No. 11,100,950 (2021).
34. S. W. Goodman, “Medical holography: An overview,” Journal of the Optical Society of America A, 2(1), 85-97 (1985).
35. M. Hamilton, T. Butyn and R. Baker, “Holographic Displays: Emerging Technologies and Use Cases in Defence Applications,” Presented at the NATO MSG-159 2018 Annual M and S Conference, Ottawa, ON, Canada, 11-12 (2018).
36. N. Liang, “The application of the holographic laser projection in the entertaining performance,” Presented at 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, Taiwan, 629-631 (2016).
37. E. Pavel, M. Mihailescu, V. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Opt. Commun. 284, 930-933 (2011).
38. R. K. Erf, Holographic Nondestructive Testing, (Academic, New York, 1974).
39. Z. Márton, I. Kisapáti, Á. Török, V. Tornari, E. Bernikola, K. Melessanaki, P. J. N. Pouli, and E. International, “Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples,” NDT & E International 63, 53-59 (2014).
40. D. A. Buralli, and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151-2158 (1991).
41. D. A. Buralli, and G. M. Morris, “Design of two-and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38-43 (1992).
42. D. Faklis, and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462-2468 (1995).
43. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452-2461 (1995).
44. C. Londono, W. T. Plummer, and P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32, 2295-2302 (1993).
45. F. T. Chen and H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett. 21, 177-179 (1996).
46. M. E. Motamedi, A. P. Andrews, W. J. Gunning III, and M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616-3623 (1994).
47. J. R. Leger, D. Chen, and G. Mowry, “Design and performance of diffractive optics for custom laser resonators,” Appl. Opt. 34, 2498-2509 (1995).
48. Y. Zhou, J. Zhang and F. Fang, “Vergence-accommodation conflict in optical see-through display: Review and prospect,” Results in Optics, 5, 100160 (2021).
49. G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE transactions on visualization and computer graphics, 22(7), 1912-1931 (2015).
50. J. Choi, S. Park and J. Ko, “Analyzing Head-Mounted AR Device Energy Consumption on a Frame Rate Perspective,” Presented at 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), San Diego, CA, USA, 1-2 (2017).
51. D. Gabor, “Microscopy by reconstructed wave-fronts. Proceedings of the Royal Society of London,” Series A. Mathematical and Physical Sciences, 197(1051), 454-487 (1949).
52. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, 9(9), 919-933 (1973).
53. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal, 48(9), 2909-2947 (1969).
54. C. C. Sun, W. C. Su, B. Wang, and Y. O. Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
55. C. C. Sun, and W. C. Su, "Three-dimensional shifting selectivity of random phase encoding in volume holograms," 40, 1253-1260 (2001).
56. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
57. 張至堯,提升近眼顯示器光學效率之輸入影像頻譜分析技術,國立中央大學光電所碩士論文,民國112年。
58. C. C. Sun, and P. P. Banerjee, “Special section guest editorial: Volume holographic optical elements,” Opt. Eng. 43, 1957-1958 (2004).
59. 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所博士論文,民國98年。
60. 鄭智元,利用相位調製改良同軸式體積全像儲存系統,國立中央大學光電所碩士論文,民國97年。
指導教授 余業緯(Yeh-Wei Yu) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明