博碩士論文 111329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.144.110.15
姓名 闕兆廷(Zhao-Ting Que)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銅與熱處理對Al-Zn-Mg合金微結構、機械性質與抗應力腐蝕性之影響
(Effects of Cu and Heat Treatments on Microstructures, Mechanical Properties and SCC Resistance of Al-Zn-Mg Alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由顯微結構觀察、機械性質與電化學分析試驗等,探討微量銅 (0,03wt%、 0.21 wt%)與不同時效熱處理(T6, T76, T73, T77)對Al-4.9Zn-1.7Mg合金機械性質與抗應力腐蝕性質的影響。主要目標是獲得具有更好耐腐蝕性和機械性質的合金。結果顯示,合金中的Cu,會促進η’-MgZn2析出強化相的析出量,因而增強了合金強度,且微量銅並不會在固溶處理後,產生S-Al2CuMg相與Al7Cu2Fe相,對於機械性質不會造成額外的損害。
相較於T6處理,過時效(over aging, 如T76與T73)與T77(RRA)等熱處理,能使合金晶界粗大析出相(GBPs, grain boundary precipitates)呈不連續析出,降低了腐蝕環境下的陽極溶解,提升了合金之抗應力腐蝕性(SCC),其中以T73態提升最為明顯。但經T76與T73處理之合金,因晶粒內析出強化相的粗化,導致合金強度的下降。而T77態也能使合金晶界粗大析出相呈不連續析出,隨回歸(retrogression)溫度的提升抗蝕性能有更進一步的提升,且經由再時效能使T77保留相當於T6狀態的強度。T77為兼顧抗蝕性與強度的組合。
由上述結果可知,含Cu (0.21 wt%)的合金比未另外添加Cu之合金具有更高的強度,綜合實驗結果顯示,Al-4.9Zn-1.7Mg含Cu (0.21 wt%)合金並施以T77-200熱處理,為能獲得最佳耐腐蝕性與機械性質組合。
摘要(英) By means of microstructural observation, mechanical property tests, electrochemical analysis, this study is aimed at exploring effects of trace copper (0.03 wt%, 0.21 wt%) and various heat treatments (T6, T76, T73, T77) on the mechanical properties and stress corrosion resistance of Al-4.9Zn-1.7Mg alloys. The main objective is to obtain alloys with better corrosion resistance and mechanical properties. The results revealed that the addition of copper promoted the precipitation of the strengthening phase η’-MgZn2, thereby enhancing the strength of the alloys. Trace copper did not lead to the formation of S-Al2CuMg or Al7Cu2Fe phases after solution treatment, nor did it cause additional damage to mechanical properties.
Compared with T6 treatment, over-aging treatments (such as T76 and T73) and T77 (RRA) induced discontinuous precipitation of grain boundary precipitates (GBPs), which reduced anodic dissolution in corrosive environments and enhanced stress corrosion resistance (SCC). Especially with T73, it showed the most significant improvement. However, the strength of alloys treated with T76 and T73 decreased owing to the coarsening of the precipitation strengthening phase within the grains. The T77 state induces discontinuous precipitation of grain boundary precipitates (GBPs) and increasing the retrogression temperature further improves corrosion resistance. Additionally, re-aging allows T77 to retain strength comparable to the T6 state. T77 represents a combination that balances both corrosion resistance and strength.
Based on the findings, the alloy with 0.21 wt% Cu showed higher strength than alloys without added Cu. Overall, the best combination of corrosion resistance and mechanical properties was achieved with the Al-4.9Zn-1.7Mg alloy containing 0.21 wt% Cu, and by T77-200 heat treatment.
關鍵字(中) ★ 鋁鋅鎂銅合金
★ 應力腐蝕
★ Cu含量
★ 析出熱處理
關鍵字(英) ★ Al-Zn-Mg-Cu alloy
★ Stress corrosion cracking
★ Cu content
★ precipitation heat treatment
論文目次 摘要......i
Abstract......iii
謝誌......v
總目錄......vi
圖目錄......viii
表目錄......xi
壹、前言與文獻回顧......1
1.1 鋁合金簡介......1
1.2 7005合金簡介......3
1.3 7000系鋁合金熱處理與析出強化序列......4
1.4 元素含量對7000系鋁合金機械性質之影響......9
1.5 RRA(retrogression and re-aging)熱處理對7000系鋁合金抗應力腐蝕性之影響......15
1.6 實驗目的......18
貳、實驗步驟與方法......19
2.1 合金成分......20
2.2 固溶處理與時效處理(含T6、T73、T76與RRA熱處理)......21
2.3 微結構分析......22
2.3.1導電度測量......22
2.3.2光學顯微鏡(Optical Microscopy, OM)......22
2.3.3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)......23
2.3.4穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)......23
2.3.5差示掃描量熱法(Differential Scanning Calorimetry, DSC)......23
2.4 極化腐蝕試驗......24
2.5 機械性質分析......24
2.5.1 硬度分析......24
2.5.2 慢速拉伸性質......25
2.6應力腐蝕試驗......25
參、結果與討論......26
3.1 微結構分析......26
3.1.1 光學顯微鏡、掃描式電子顯微鏡(SEM)與能量色散X光譜(EDS)分析......26
3.1.2 差示掃描量熱儀(DSC)分析......28
3.1.3 導電度析出動力學分析......31
3.1.4 穿透式電子顯微鏡(TEM)微結構分析......35
3.2 極化腐蝕試驗......39
3.3 機械性質分析......41
3.3.1 硬度測試......41
3.3.2 慢速拉伸性質......43
3.4 應力腐蝕試驗......48
肆、結論......54
參考文獻......56
參考文獻 [ASM] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P. 691. (1994)
[ASTM1] ASTM B211-21, Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes. (2021)
[ASTM2] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy. (2017)
[ASTM3] ASTM G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. (2013)
[ASTM4] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials. (2016)
[ASTM5] ASTM G44-21, Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5 % Sodium Chloride Solution. (2021)
[BIR] N. Birbilis, R. G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys: An Experimental Survey and Discussion”, Journal of The Electrochemical Society, Vol. 152, pp. 140-151. (2005)
[CAO] F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, “Experimental and DFT Characterization of η’ Nano-Phase and Its Interfaces in Al-Zn-Mg-Cu Alloys”, Acta Materialia, Vol. 164, pp. 207-219. (2019)
[RET] D. G. Rethwisch, W. D. Callister Jr, Materials Science and Engineering: An Introduction, Wiley, pp. 399. (2018)
[CHE1] L. Chen, G. Zhao, J. Yu, W. Zhang, “Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process”, Materials & Design, Vol. 66, pp. 129-136. (2015)
[CHE2] S. Chen, K. Chen , P. Dong, S. Ye, L. Huang, “Effect of Recrystallization and Heat Treatment on Strength and SCC of An Al-Zn-Mg-Cu Alloy”, Journal of Alloys and Compounds, Vol.581, pp. 705-709. (2013)
[CHI1] N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, “The Effect of Cu on Mechanical and Precipitation Properties of Al-Zn-Mg Alloys”, Journal of Alloys and Compounds, Vol. 378, pp. 52-60. (2004)
[CHI2] Y. C. Chiu, K.T. Du, H.Y. Bor, G.H. Liu, S. L. Lee, “The Effects of Cu, Zn and Zr on The Solution Temperature and Quenching Sensitivity of Al-Zn-Mg-Cu Alloys”, Materials Chemistry and Physics, Vol. 247. (2020)
[DEN] Y. L. Deng, Y. Y. Zhang, L. Wan, A. A. Zhu, X. M. Zhang, “Three-Stage Homogenization of Al-Zn-Mg-Cu Alloys Containing Trace Zr”, Metallurgical and Materials Transactions A, Vol. 44, pp. 2470-2477. (2013)
[DON] P. Dong, S. Chen, “Effects of Cu Content on Microstructure and Properties of Super-High-Strength Al-9.3Zn-2.4Mg-xCu-Zr Alloy”, Journal of Alloys and Compounds, Vol. 788, pp. 329-337. (2019)
[DUN] Y. Duan, L. Tang, G. Xu, Y. Denga, Z. Yina, “Microstructure and Mechanical Properties of 7005 Aluminum Alloy Processed by Room Temperature ECAP and Subsequent Annealing”, Journal of Alloys and Compounds, Vol. 664, pp. 518-529. (2016)
[GHO] K. S. Ghosh, K. Das, U. K. Chatterjee, “Correlation of Stress Corrosion Cracking Behavior with Electrical Conductivity and Open Circuit Potential in Al-Li-Cu-Mg-Zr Alloys”, Materials and Corrosion, Vol. 58, pp. 181-188. (2007)
[GU] K. Gu, K. Wang, L. Chen, J. Guo, C. Cui, J. Wang, “Micro-Plastic Deformation Behavior of Al-Zn-Mg-Cu Alloy Subjected to Cryo-Cycling Treatment”, Materials Science and Engineering: A, Vol. 742, pp. 672-679. (2019)
[HU] K. Hu, C. Lin, S. Xia, C. Zheng, B. Lin, “Effect of Fe Content on Low Cycle Fatigue Behavior of Squeeze Cast Al-Zn-Mg-Cu Alloys”, Materials Characterization, Vol. 170. (2020)
[HUA] L. Huang, K. Chen, S. Li, “Influence of Grain-Boundary Pre-Precipitation and Corrosion Characteristics of Inter-Granular Phases on Corrosion Behaviors of An Al-Zn-Mg-Cu Alloy”, Materials Science and Engineering: B, Vol. 177, pp. 862-868. (2012)
[KE] B. Ke, L. Ye, Y. Zhang, J. Tang, S. Liu, X. Liu, Y. Dong, P. Wang, “Enhanced Mechanical Properties and Corrosion Resistance of An Al-Zn-Mg Aluminum Alloy Through Variable-Rate Non-Isothermal Aging”, Journal of Alloys and Compounds, Vol. 890. (2022)
[KHA] M. A. Khan, Y. Wang, G. Yasin, F. Nazeer, A. Malik, T. Ahmad, W. Q. Khan, T. A. Nguyen, H. Zhang, M. A. Afifi, “Adiabatic Shear Band Localization in An Al-Zn-Mg-Cu Alloy Under High Strain Rate Compression”, Journal of Materials Research and Technology, Vol. 9, pp. 3977-3983. (2020)
[KNI] S.P. Knight, N. Birbilis, B. C. Muddle, A. R. Trueeman, S. P. Lynch, “Correlations Between Intergranular Stress Corrosion Cracking, Grain-Boundary Microchemistry, and Grain-Boundary Electrochemistry for Al-Zn-Mg-Cu Alloys”, Corrosion Science, Vol. 52, pp. 4073-4080. (2010)
[LAN] P. Lang, T. Wojcik, E. P. Karadeniz, A. Falahati, E. Kozeschnik, “Thermo-Kinetic Prediction of Metastable and Stable Phase Precipitation in Al-Zn-Mg Series Aluminium Alloys During Non-Isothermal DSC Analysis”, Journal of Alloys and Compounds, Vol. 609, pp.129-136. (2014)
[LEE1] 李勝隆, 金屬熱處理:原理與應用, 二版, 全華圖書, P.9-3, 2018.
[LEE2] 李勝隆, 金屬熱處理:原理與應用, 二版, 全華圖書, P.9-41, 2018.
[LEE3] 李勝隆, 金屬熱處理:原理與應用, 二版, 全華圖書, P.9-43, 2018.
[LEE4] 李勝隆, 金屬熱處理:原理與應用, 二版, 全華圖書, P.9-48, 2018.
[LI1] H. Z. Li, S. C. Yao, X. P. Liang, Y. H. Chen, C. Liu, L. Huang, “Grain Boundary Pre-Precipitation and Its Contribution to Enhancement of Corrosion Resistance of Al−Zn−Mg Alloy”, Transactions of Nonferrous Metals Society of China, Vol. 26, pp. 2523-2531. (2016)
[LI2] X. Li, J. J. Yu, “Modeling The Effects of Cu Variations on The Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys”, Journal of Materials Engineering and Performance, Vol. 22, pp. 2970-2981. (2013)
[LIM] S. T. Lim, S. J. Yun, S.W. Nam, “Improved Quench Sensitivity in Modified Aluminum Alloy 7175 for Thick Forging Applications”, Materials Science and Engineering: A, Vol. 371, pp. 82-90. (2004)
[LIU] D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, F. Wang, H. Liu, “Quantitative Study of Precipitates in An Al-Zn-Mg-Cu Alloy Aged with Various Typical Tempers”, Materials Science and Engineering: A, Vol. 588, pp. 1-6. (2013)
[QIN] C. Qin, G.Q. Gou, X.L. Che, H. Chen, J. Chen, P. Li, W. Gao, “Effect of Composition on Tensile Properties and Fracture Toughness of Al-Zn-Mg Alloy (A7N01S-T5) Used in High-Speed Trains”, Materials & Design, Vol. 91, pp. 278-285. (2016)
[RAM] T. Ramgopal, P. I. Gouma, G. S. Frankel, “Role of Grain-Boundary Precipitates and Solute-Depleted Zone on The Intergranular Corrosion of Aluminum Alloy 7150”, Corrosion, Vol. 58, pp. 687-697. (2002)
[ROU] P. K. Rout, M.M. Ghosh, K.S. Ghosh, “Microstructural, Mechanical and Electrochemical Behavior of A 7017 Al-Zn-Mg Alloy of Different Tempers”, Materials Characterization, Vol. 104, pp. 49-60. (2015)
[SAR] B. Sarkar, M. Marek, E. A. Starke, “The Effect of Copper Content and Heat Treatment on The Stress Corrosion Characteristics of Al-6Zn-2Mg-XCu Alloys”, Metallurgical Transactions A, Vol. 12, pp.1939-1943. (1981)
[SHE] H. She, D. Shua, J. Wang, B.D. Sun, “Influence of Multi-Microstructural Alterations on Tensile Property Inhomogeneity of 7055 Aluminum Alloy Medium Thick Plate”, Materials Characterization, Vol.113, pp.189-197. (2016)
[SHI] T. S. Shih, Q. Y. Chung, “Fatigue of As-Extruded 7005 Aluminum Alloy’, Materials Science and Engineering A, Vol. 348, pp. 333-344. (2003)
[SHU] W. X. Shu, L.G. Hou, C. Zhang, F. Zhang, J. C. Liu, J.T. Liu, L.Z. Zhuang, J. S. Zhang, “Tailored Mg and Cu Contents Affecting The Microstructures and Mechanical Properties of High Strength Al-Zn-Mg-Cu Alloys”, Materials Science and Engineering: A, Vol. 657, pp. 269-283. (2016)
[TAN1] J. Tang, M. Liu, G. Bo, F. Jiang, C. Luo, J. Teng, D. Fu, H. Zhang, “Unraveling Precipitation Evolution and Strengthening Function of The Al-Zn-Mg-Cu Alloys with Various Zn Contents: Multiple Experiments and Integrated Internal-State-Variable Modeling”, Journal of Materials Science & Technology, Vol. 116, pp. 130-150. (2022)
[TAN2] J. G. Tang, H. Chen, X. M. Zhang, S. D. Liu, W. J. Liu, H. Ouyang, H. P. Li, “Influence of Quench-Induced Precipitation on Aging Behavior of Al-Zn-Mg-Cu Alloy”, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 1255-1263. (2012)
[WAN1] S. Wang, B. Luo, Z. Bai, C. He, S. Tan, G. Jiang, “Effect of Zn/Mg Ratios on Microstructure and Stress Corrosion Cracking of 7005 Alloy”, Materials, Vol. 12. (2019)
[WAN2] S. S. Wang, I. W. Huang, Li Yang, J.T. Jiang, J. F. Chen, S.L. Dai, D. N. Seidman, G. S. Frankel, L. Zhen, “Effect of Cu Content and Aging Conditions on Pitting Corrosion Damage of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, Vol. 162, pp. 150-160. (2015)
[WAN3] Y. Wang, L. Cao, X. Wu, X. Tong, B Liao, G. Huang, Z. Wang, “Effect of Retrogression Treatments on Microstructure, Hardness and Corrosion Behaviors of Aluminum Alloy 7085”, Journal of Alloys and Compounds, Vol. 814. (2020)
[WEI] S. Wei, R. Wang, H. Zhang, C. Xu, Y. Wu, Y. Feng, “Influence of Cu/Mg Ratio on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys”, Journal of Materials Science, Vol. 56, pp. 3472-3487. (2021)
[WEN] K. Wen, B. Xiong, W. Ren, Y, Tong, X. Li, Z. Li, Y. Zhang, Y. Li, L.Yan, H. Yan, H. Liu, “Fe-Rich Particles Influenced Secondary Crack Characteristics in An Al-Zn-Mg-Cu Alloy Extrusion Plate with High Zinc Content”, Scripta Materialia, Vol. 186, pp. 259-262. (2020)
[XU] D. K. Xu. N. Birbilis, P. A. Rometsch, “Effect of S-Phase Dissolution on The Corrosion and Stress Corrosion Cracking of An As-Rolled Al-Zn-Mg-Cu Alloy”, Corrosion, Vol. 68. (2012)
[YUA] D. Yuan, K. Chen, S. Chen, L. Zhou, J. Chang, L. Huang, Y. Yi, “Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Slow Quench Rate”, Materials & Design, Vol. 164. (2019)
[ZHA1] C. Zhang, Y. Wan, W. Zou, X. Shang, Y. Zhang, “Composition Optimization for Al-Zn-Mg-Cu Alloys Based on Thermodynamics and First-Principles Calculations”, Computational and Theoretical Chemistry, Vol. 1201. (2021)
[ZHA2] H. Zhao, F. D. Geuser, A. K. Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, “Segregation Assisted Grain Boundary Precipitation in A Model Al-Zn-Mg-Cu Alloy”, Acta Materialia, Vol.156, pp. 318-129. (2018)
[ZHA3] Z. Zhang, Y. Deng, L. Ye, W. Zhu, F. Wang, K. Jiang, X. Guo, “Influence of Aging Treatments on The Strength and Localized Corrosion Resistance of Aged Al-Zn-Mg-Cu Alloy”, Journal of Alloys and Compounds, Vol. 846. (2020)
指導教授 李勝隆(Sheng-long Lee) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明