博碩士論文 111226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:13.58.217.122
姓名 紀冠宇(Guan-Yu Ji)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於視角擷取的光場近眼顯示技術
(Light Field Near Eye Display Base On View-Angle Extraction)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 歐規之高對比度近遠燈設計與雜散光分析
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究★ 費奈爾透鏡之光學效率與雜散光分析
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析★ 多波繞射疊加訊號法之參考光位置誤差分析
★ 使用方解石於數位全像顯微系統的深度測量系統★ 陣列式燈具光學特性快速量測之研究
★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本論文旨提出利用體積全像光元件結合波導技術來製作光導的方法,以實現光場技術。光場是透過透鏡陣列使影像資訊在每一個區域都有著不同的光資訊,最終帶有三維資訊的影像,可以解決目前頭戴式顯示器的視覺輻輳調節衝突之問題。在光導的製作,體積全像光學元件具有角度選擇性之特性,以取代透鏡陣列上的每一個子透鏡,萃取出影像的不同視角,並設計全像透鏡使視角放大,解決市售近眼顯示器視角的不足。實驗中,製作橫向與縱向的子透鏡陣列,並以相位疊加法模擬,在滿足布拉格條件各子透鏡所萃取的視角。實驗結果表示出以體積全像光學元件製作子透鏡,可萃取到不同的子畫面,子畫面視角可相差2.79度,且子畫面的視角放大2.2~2.3倍間。
摘要(英) This is proposes a method for creating optical waveguides using volume holographic optical elements combined with waveguide technology to realize light field technology. The light field, through an array of lenses, ensures that each region contains different optical information, ultimately producing images with three-dimensional information. This can solve the current visual convergence-accommodation conflict issue in head-mounted displays.
In the creation of optical waveguides, volume holographic optical elements, with their angle selectivity characteristics, replace each sub-lens in the lens array, extracting different perspectives of the image. Additionally, holographic lenses are designed to magnify the viewing angles, addressing the insufficient viewing angles in commercial near-eye displays.
During the experiments, lateral and longitudinal sub-lens arrays were created, and simulations were conducted using phase superposition to meet the Bragg conditions for the viewing angles extracted by each sub-lens. The experimental results demonstrated that sub-lenses made with volume holographic optical elements can extract different sub-images, with a viewing angle difference of 2.79 degrees between sub-images, and the viewing angles of sub-images are magnified by a factor of 2.2 to 2.3.
關鍵字(中) ★ 體積全像
★ 相位疊加法
★ 光導
★ 光場
★ 透鏡陣列
關鍵字(英) ★ volume hologram
★ VOHIL
★ light guide
★ light field
★ lens array
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機 3
1-4 論文前置研究 4
1-5 論文架構 4
第二章 實驗原理 5
2-1 全像術 5
2-2 薄全像與厚全像 9
2-3 布拉格條件 10
2-4 耦合波理論 13
2-5 相位疊加法 31
2-6 光場顯示 38
2-7 成像放大率系統 41
第三章 體積全像光學元件之角度選擇性模擬與光場應用 43
3-1 體積全像光學元件的角度選擇性以光場技術之應用 43
3-2 利用相位疊加法建立三維解析解 45
3-2-1 水平角度擷取模擬 55
3-2-2 垂直角度擷取模擬 56
3-3 建立拍攝三維體積全像光學元件偏振模擬 58
第四章 設計二維光導實驗架構與驗證 62
4-1 實驗架構 62
4-2 二維光導之設計 73
4-2-1 橫向角度選擇的透鏡陣列與視角放大光導元件之設計74
4-2-2 縱向角度選擇的透鏡陣列與視角放大光導元件之設計79
4-3 二維視角放大和擷取光導實驗結果與分析 84
4-3-1 體積全像光學元件繞射效率分析 84
4-3-2 實驗和設計之視角放大分析 90
4-3-3 實驗和模擬的角度選擇性分析 95
4-4 二維視角放大和擷取光導實驗討論 101
第五章 結論 106
參考資料 108
中英文名詞對照表 111
參考文獻 1. Azuma and T. Ronald, “A survey of augmented reality,” Presence: teleoperators & virtual environments 6(4), 355-385 (1997).
2. M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” presented at CHI conference on human factors in computing systems, New York, United States, 1-15 May 2019.
3. G. Schmitt, “Virtual Reality, Augmented Reality, and Mixed Reality,” https://dribbble.com/shots/2858797-Virtual-Reality-Augmented-Reality-and-Mixed-Reality.
4. C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, “Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective,” Optica 7(11), 1563-1578 (2020).
5. L. Eisen, M. Meyklyar, M. Golub, A. Friesem, I. Gurwich, and V. L. Weiss, “Planar configuration for image projection,” Appl. Opt. 45, 4005-4011 (2006).
6. S. Yamazaki, K. Inoguchi, Y. Saito, H. Morishima, and N. Taniguchi, “Thin wide-field-of-view HMD with free-form-surface prism and applications,” SPIE 3639, 453-462 (1999).
7. C. T. Draper, C. M. Bigler, M. S. Mann, K. Sarma, and P. A .Blanche, “Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification,” Appl. Opt. 58(5), 251-257 (2019).
8. E. Pavel, M. Mihailescu, V. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Opt. Commun. 284(4), 930-933 (2011).
9. G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, “Evaluating the Microsoft HoloLens through an augmented reality assembly application,” SPIE 10197, 282-297 (2017).
10. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452-2461 (1995).
11. D. M .Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
12. J. P. Rolland, M. W. Krueger, and A. A. Goon, “Dynamic focusingin head-mounted displays,” SPIE 3639, 463-470, (1999).
13. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display.” Opt. Express 17(18), 15716-15725 (2009).
14. D. Lanman and D. Luebke, “Near-Eye Light Field Displays,” ACM transactions on graphics (TOG) 32(6), 1-10 (2013).
15. R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant computational near-eye displays,” ACM Trans. Graph. 36(6), 88 (2017).
16. C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292-18301(2018).
17. D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
18. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55(8), 981-986 (1965).
19. D Gabor and P. Sciences, “Microscopy by reconstructed wave-fronts,” The Royal Society Mathematical and Physical Sciences 197(1051), 454-487 (1949).
20. E. Völkl, L. F. Allard, and D. C. Joy, Introduction to electron holography. (Springer Science & Business Media, New York, 1999).
21. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” IEEE 87(12), 2098-2120 (1999).
22. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811-813 (1999).
23. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I. (Springer-Verlag, Berlin, 1988).
24. B. R. David, Understanding diffraction in volume gratings and holograms. (InTech, New York, 2013).
25. W. Klein, “Theoretical efficiency of Bragg devices,” IEEE 54(5), 803-804 (1966).
26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
27. A. Yariv and P. Yeh, Optical waves in crystals. (Wiley, New York, 1984).
28. P. Yeh, Introduction to photorefractive nonlinear optics. (Wiley, New York, 1993).
29. 劉政銓,具有角度放大功能之近眼顯示器全像光導,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
30. A. Gershun, “The light field,” Journal of Mathematics and Physics 18(1-4), 51-151 (1939).
31. C. Londono, W. T. Plummer, and P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
32. A. Chiou, P. Yeh, C. X. Yang, and C. Gu, “Photorefractive coupler for fault-tolerant coupling,” IEEE 7(7), 789-791 (1995).
33. A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20(10), 1125-1127 (1995).
34. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
35. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
36. J. W. Goodman, Introduction to Fourier Optics. (McGraw-Hall, New York, 2002).
37. C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132-1134 (2005).
38. C. C. Sun and P. P. Banerjee, “Volume holographic optical elements,” Opt. Eng. 43(9) (2004).
39. 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
40. C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175(1-3), pp.67-74 (2000).
41. Y. W. Yu, C. Y. Cheng, T. C. Teng, C. H. Chen, S. H. Lin, B. R. Wu, C. C. Hsu, Y. J. Chen, X. H. Lee, and C. Y. Wu, “Method of compensating for pixel migration in volume holographic optical disc (VHOD),” Opt. Express 20(19), 20863-20873 (2012).
42. J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, ”Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Experss 24(6), A720-A730 (2016).
43. 余業緯,應用體積全像光學元件之布拉格窗於點對點成像之研究,國立中央大學光電所碩士論文,中華民國九十三年。
44. 王語謙,光導式近眼顯示器之子畫面擷取技術,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
指導教授 余業緯(Yeh-Wei Yu) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明