博碩士論文 107329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.21.104.16
姓名 陳柏淞(Po-Sung Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 熱機處理對改質後輕量富鈦中熵合金之微結構與機械性質影響之研究
(The study on the effect of thermo-mechanical treatment on microstructure and mechanical properties of microalloyed light-weight Ti-rich medium entropy alloys)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 因其優異的材料性能和靈活的設計條件,多主元素合金(Multi-principal Element Alloys, MPEAs)突破傳統的合金設計框架並成為當今材料發展的主流之一。而又因其混合熵值的不同,又可在進一步分成高熵合金(High-entropy alloys, HEAs)與中熵合金(Mediun-entropy alloys, MEAs)。而由於科技發展帶動之技術指標的提高與能源效率的追求,開發同時具高強度且優異延展性的輕量材料是目前結構材料學界的主要研究方向之一,而熱機處理為一普遍且有效提升合金機械性能之方法。本次研究將以本實驗室開發之數種改質後輕量富鈦中熵合金(Ti65Ni3 MEA、Ti65Zr7 MEA與Ti65Bx series MEAs)為基礎,透過熱機處理與搭配快速退火製程,以期開發出具有低密度(~ 5 g/cm3)、高強度(YS ≥ 1200 MPa)與高延展性(EL% ≥ 10%)之中熵合金。
在Ti65Ni3部分,該合金先進行三種不同的滾軋製程,分別為(1)冷軋70%(CR70)、(2)冷軋85%(CR85)與(3)熱軋50%然後冷軋70 %(HR50CR70)。接著再進行快速退火(升溫速率15℃/秒)熱處理至743℃、770℃、812℃和881℃。透過X光繞射分析(X-ray diffraction analysis, XRD)可以證明Ti65Ni3在經熱機處理後仍可維持單一BCC固溶相。而透過電子背向散射繞射(Electron Back Scatter Diffraction, EBSD)的觀察可以看到合金的再結晶率隨著退火溫度的升高而增加。而在拉伸測試方面,隨著退火溫度的升高,Ti65Ni3的降服強度降低,延展性亦隨之增加。比較三種滾軋製程可以看出,較高的冷加工量會使合金再結晶的行為提前;而熱軋製程則可細化合金晶粒,使合金在冷軋時能更為有效的積累應變能,進而也使得再結晶溫度降低。其中,經CR85和HR50CR70製程的Ti65Ni3合金再經快速退火至770℃後皆擁有優異的機械性質表現,其降伏強度分別可達1250和1232 MPa,且同時具有相似的延展性(EL% ~ 16%)。
在Ti65Zr7部分,該合金則進行兩種不同的滾軋製程,分別為(1)熱軋50%然後冷軋70 %(HR50CR70)與(2)熱軋50%然後冷軋80 %(HR50CR80)。再進行兩種不同升溫速率(15℃/秒和25℃/秒)的快速退火分別至30、40、50、60秒。一樣透過XRD觀察,經熱機處理後的Ti65Zr7依舊可維持單一BCC結構。而透過EBSD觀察可以看出,在相同時間下,較高的退火升溫速率將使合金具有更高的再結晶率;較高的冷加工量則可使再結晶的合金晶粒尺吋降低。而透過拉伸測試得知,採用HR50CR70製程的Ti65Zr7再經快速退火(15℃/秒)至30 到50秒後展現優異的機械性能。其降伏強度可達1200MPa且同時具有15%以上之延性。此外,經過適當的熱機處理製程並透過分析加工硬化率,可以發現Ti65Zr7合金具有異構組織強化的機制。
在Ti65Bx部分,Ti65B0、Ti65B0.1和Ti65B0.2 合金統一先熱軋50%然後再冷軋80%(HR50CR80),之後再進行快速退火(15℃/秒)至700、800和900℃。由光學顯微鏡(Optical microscope, OM)可以得知隨著硼含量的添加,合金的晶粒尺吋也隨之下降。而經熱機處理後,XRD的分析結果則有析出物的特徵峰出現。因此利用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)與穿透式電子顯微鏡(Transmission electron microscope, TEM)對析出物進行微觀分析,可發現析出物是生成在晶界上且其成份被確定為TiB。而在相同退火溫度下,合金的強度與硬度隨著硼含量的上升而增加。而在OM的觀察下可看見隨著硼含量的上升合金的再結晶比例則越低,推斷是因為生長於晶界上的析出物阻礙差排移動,致使合金的再結晶溫度升高。而在再結晶後,各合金的延性均提升至超過20%。其中,經HR50CR80製程的Ti65B0.2合金再經800℃退火後,展現優異的綜合機械性質(YS. 1275 MPa,EL. 10%)。
另外亦與金屬工業研究發展中心(Metal Industries Research & Development Centre, MIRDC)合作,透過感應凝殼熔煉成功製備工業尺吋級的Ti65Zr7合金。並再與台鋼航太科技股份有限公司(S-Tech Corp.)攜手完成大件Ti65Zr7合金之熱鍛製程。在鑄態方面,隨著與澆口距離的增加,合金的晶粒尺吋會降低,而硬度則隨之增加。而在經熱機處理後其機械性質與實驗室製備的樣品相近,展現優異的工業應用潛力。
整體而言,本研究的目的是透過熱機械處理來優化輕量富鈦中熵合金的材料性能,並分析不同微量元素的添加、熱軋的有無、冷軋加工量與退火加熱速率等參數對合金微結構與機械性質之影響。本次成功開發具優異機械性質的輕量高性能富鈦中熵合金,對比國際上其它研究亦展現相當優異的機械性質。同時相關的研究成果與經驗可作為藍圖,為未來開發相關輕量中/高熵合金提供參考與路徑。
摘要(英) Due to the excellent material properties and flexible design conditions, the multi-principal elements alloys has breakthrough the traditional alloy design concept. According to the difference in mixing entropy, it can be further divided into high-entropy alloys (HEAs) and medium-entropy alloys (MEAs). Because of the improvement of technical standards and the pursuit of energy efficiency, the development of lightweight materials with high strength and ductility is one of the main issue in the structural materials community. The thermo-mechanical treatment is a widely and effectively processing to enhance the mechanical properties of the metallic materials. In this study, several lightweight Ti-rich MEAs (Ti65Ni3, Ti65Zr7, Ti65Bx series) were conducted with thermo-mechanical treatment to optimize the microstructure and mechanical properties. The purpose of this study is to strengthen the MEAs with low density (~ 5 g/cm3), high strength (YS ≥ 1200 MPa) and high ductility (EL% ≥ 10%).
In Ti65Ni3 MEA section, the alloy was treated by three types of thermo-mechanical treatment: (1) Cold-rolled 70% (CR70), (2) Cold-rolled 85% (CR85), (3) Hot-rolled 50% then cold-rolled 70% (HR50CR70). Then these three different processed alloys were rapidly annealed at temperature of 743°C, 770°C, 812°C, and 881°C, respectively with a heating rate of 15°C /sec. Through the XRD analysis, it can be confirmed that the MEAs can maintain as a single solid solution structure after thermo-mechanical treatment. Meanwhile, the recrystallization ratio increases with annealing temperature via the EBSD observation. The results of tensile testing revealed that with increasing annealing temperature, the yield strength decreases and the ductility increases, respectively. Compare different process of thermo-mechanical treatment, it can be noticed that high cold-rolled amount can make the recrystallization behavior earlier, and the hot rolled process can make efficient in strain energy accumulation to reduce the recrystallization temperature. Among of all, the specimen conducted with CR85 and HR50CR70 process exhibit outstanding yield strength of 1250 MPa and 1232 MPa with annealing at 770°C, respectively. In addition, both the MEAs present similar tensile ductility of 16%.
In Ti65Zr7 MEA section, the MEA was subjected to two types of rolling process, hot-rolled 50% then cold-rolled 70% (HR50CR70) and hot-rolled 50% then cold-rolled 80% (HR50CR80), and then conducted in different annealing heating rate (15°C/sec and 25°C/sec) with different time. By XRD observation, the MEA can maintain as BCC structure after thermo-mechanical treatment. Through EBSD observation, it can be seen that under same annealing time, the recrystallized ratio of 25°C/sec is larger than 15°C/sec, and grain size of HR50CR80 sample is smaller than HR50CR70 sample. The tensile testing results show the alloy with HR50CR70 process then with annealing for 30 to 50 seconds present outstanding mechanical properties which yield strength can be higher than 1200 MPa with more than 15% ductility. In addition, conducted with proper thermo-mechanical treatment, it can be noticed that Ti65Zr7 MEA possess the characteristic of the hetero-structure strengthening by observing the work hardening rate.
In Ti65Bx MEA section, the Ti65B0, Ti65B0.1 and Ti65B0.2 MEA were conducted with hot-rolled 50% then cold-rolled 80% (HR50CR80) and then subjected the 15°C/sec annealing to 700, 800 and 900°C. It can be noticed that adding boron can reduce the grain size of the alloy by OM images. After thermo-mechanical treatment, the XRD results showed the characteristic peak of the precipitate. Through SEM and TEM, the precipitate can be observed on the grain boundary and is identified as TiB intermetallic compound. The strength and hardness increase with increasing boron content under same heat treatment conditions. In terms of microstructure, the recrystallization behavior of the alloy tends to be tough by boron doping, resulting in an increase of recrystallization temperature. After recrystallization, the elongation of Ti65B0, Ti65B0.1, and Ti65B0.2 exceeded 20%. Among of all, the Ti65B0.2 MEA processed HR50CR80 then annealed at 800°C presents the optima synergy of yield strength and ductility (YS. 1275 MPa, EL. 10%).
In industry-dimension production of Ti65Zr7 MEA, the ingots are successfully fabricated by induction skull melting. The microstructure and the mechanical properties of the as-cast and thermo-mechanical treatment sample are investigated. It can be noticed that when the distance to the sprue increase, the grain size will be decrease while the hardness increase. And the mechanical properties of industry-dimension ingot are similar with the laboratory samples that exhibit huge potential for industry application.
Overall, the purpose of this study is to optimize the material properties of the lightweight Ti-rich MEAs through thermo-mechanical treatment. The effects of minor element addition, hot-rolled process, cold-rolled amount and different annealed heating rate on microstructure and mechanical properties are fully discussed. Through these experimental results, it can provide a blueprint for subsequent lightweight Ti-rich MEAs development. Undoubtedly, the MEAs with excellent material properties and flexible alloy design will have wide development and application in structural material community in the future.
關鍵字(中) ★ 輕量材料
★ 中熵合金
★ 熱機處理
★ 快速退火
★ 異構組織強化
關鍵字(英) ★ light-weight
★ medium-entropy alloy
★ thermomechanical treatment
★ rapid thermal annealing
★ hetero-structure strengthening
論文目次 摘要 ……………………………………………………………………………i
Abstract ………………………………………………………………………..iv
Acknowledgments ...………………………………………………………….vii
Table of Contents …………………………………………………………….viii
List of Tables …………………………………………………………………..xi
List of Figures ………………………………………………………………..xiii
1. Introduction ………………………………………………………………...1
2. Literature review ……………………………………………………………3
2-1. Definition of high-entropy alloys (HEAs) ……………..………………3
2-2. Thermodynamic parameters for the solid solution formation …………4
2-3. Core effects of HEAs …………………………………………………..6
2-3-1. High-entropy effect ...…………………………………………...6
2-3-2. Severe lattice distortion effect …………………………………..7
2-3-3. Sluggish diffusion effect ………………………………………..7
2-3-4. Cocktail effect …………………………………………………..8
2-4. Further development of HEAs …………………………………………8
2-4-1. Light-weight material …………………………………………...8
2-4-2. Non-equiatomic concept ………………………………………..9
2-5. Factors affecting mechanical behavior …………………………………9
2-5-1. Solid solution strengthening …………………………………...10
2-5-2. Grain boundary strengthening …………………………………11
2-5-3. Thermo-mechanical treatment ………………………………....12
2-5-4. Heterogeneous structure ……………………………………….13
2-6. Previous studies of light-weight medium-entropy alloys (LWMEAs)...14
2-6-1. Quaternary and quinary LWMEAs …………………………………14
2-6-2. Micro-alloying of LWMEAs …………………………………….…15
3. Experimental procedures ……………………………………………….....16
3-1. Fabrication ……………………………………………………………16
3-1-1. Melting and casting ……………………………………………16
3-1-2. Homogenization …………………………………………….....16
3-1-3. Thermo-mechanical treatment ……………………………........17
3-2. Microstructure Characterization ……………………………………...18
3-2-1. Density ………………………………………………………...18
3-2-2. X-ray diffraction (XRD) ………………………………………18
3-2-3. Optical microscope (OM) ……………………………………..18
3-2-4. Scanning electron microscope (SEM) …………………………19
3-2-5. Electron backscatter diffraction (EBSD) ………………………19
3-2-6. Transmission electron microscope (TEM) …………………….19
3-3. Mechanical testing …………………………………………………....19
3-3-1. Hardness ……………………………………………………….19
3-3-2. Tensile testing ………………………………………………....19
3-3-3. Nano-indenter …………………………………………………20
4. Results and Discussion …...……………………………………………….21
4-1. Ti65Ni3 series ………………………………………………………..21
4-1-1. Microstructure …………………………………………………21
4-1-2. Mechanical properties …………………………………………23
4-2. Ti65Zr7 series ………………………………………………………...24
4-2-1. Microstructure …………………………………………………24
4-2-2. Mechanical properties …………………………………………26
4-3. Ti65Bx series …………………………………………………………28
4-3-1. Microstructure …………………………………………………28
4-3-2. Mechanical properties …………………………………………30
4-4. Industry-dimension production of Ti65Zr7 MEA ………………….....33
4-4-1. Microstructure …………………………………………………33
4-4-2. Mechanical properties …………………………………………34
5. Conclusion ………………………………………………………………...35
6. Reference ……………………………………………………………….....38
參考文獻 [1] ASM International. Handbook Committee, “Properties and Selection: Irons, Steels, and High-Performance Alloys”, Vol.1, Materials Park, OH: ASM International, 1990.
[2] Aluminum-Lithium Alloys Fight Back. https://aluminiuminsider.com/aluminium -lithium-alloys-fight-back/
[3] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe. Stiff, light, strong and ductile: nano-structured High Modulus Steel. Scientific Reports 2017, 7, 2757.
[4] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater 2004, 6, 299-303.
[5] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004, 375, 213-218.
[6] Zhiming Li, Konda Gokuldoss Pradeep, Yun Deng, Dierk Raabe, Cemal Cem Tasan. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230.
[7] Zhiming Li, Dierk Raabe. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. JOM 2017, 69, 2099–2106.
[8] K. H. Huang, J. W. Yeh. A Study On Multicomponent Alloy Systems containing Equal-Mole Elements. Department of Materials Science and Engineering. Hsinchu: National Tsing Hua University, 1996.
[9] J. W. Yeh. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.
[10] W. D. Callister, D. G. Rethwisch. Materials Science and Engineering; Wiley: Hoboken, NJ, USA, 2011; Volume 8.
[11] A. Helth, U. Siegel, U. Ku¨hn, T. Gemming, W. Gruner, S. Oswald, T. Marr, J. Freudenberger, J. Scharnweber, C.G. Oertel, W. Skrotzki, L. Schultz, J. Eckert. Influence of boron and oxygen on the microstructure and mechanical properties of high-strength Ti66Nb13Cu8Ni6.8Al6.2 alloys. Acta Materialia 2013, 61, 3324–3334.
[12] O. N. Senkov, S. L. Semiatin. Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working. Journal of Alloys and Compounds 2015, 649, 1110–1123.
[13] Jinxiong Hou, Min Zhang, Shengguo Ma, Peter. K. Liaw, Yong Zhang, Junwei Qiao. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. 2017, 707, 593–601.
[14] R. R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P. P. Bhattacharjee. Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Mater. Charact. 2018, 136, 286–292.
[15] Shuying Chen, Ko-Kai Tseng, Yang Tong, Weidong Li, Che-Wei Tsai, Jien-Wei Yeh, Peter K. Liaw. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 2019, 795, 19–26.
[16] Yung-Chien Huang, Yi-Cheng Lai, Yu-Hsien Lin, Shyi-Kaan Wu. A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy. J. Alloys Compd. 2021, 855, 157404.
[17] Y. C. Liao, P. S. Chen, P. H. Tsai, J. S.C. Jang, K. C. Hsieh, H. W. Chang, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Effect of thermomechanical treatment on the microstructure evolution and mechanical properties of lightweight Ti65(AlCrNb)35 medium-entropy alloy. Intermetallics 2022, 143, 107470.
[18] Ming-Hung Tsai, Jien-Wei Yeh. High-Entropy Alloys: A Critical Review. Materials Research Letters 2014, 2, 107–123.
[19] Rui Li, Jia Cheng Gao, Ke Fan. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Mater. Sci. Forum 2010, 650, 265–271.
[20] Xing Hao Du, Rui Wang, Cai Chen, Bao Lin Wu, J.C. Huang. Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy. Key Eng. Mater. 2017, 727, 132–135.
[21] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Advanced engineering materials 2008, 10, 534-538.
[22] X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics 2012, 132, 233-238.
[23] Akira Takeuchi, Kenji Amiya, Takeshi Wada, Kunio Yubuta, Wei Zhang, Akihiro Makino. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 2013, 15, 3810–3821.
[24] Jien Wei Yeh, Yu Liang Chen, Su Jien Lin, Swe Kai Chen. High-entropy alloys - A new era of exploitation. Materials Science Forum 2007, 560, 1–9.
[25] Sheng GUO, C. T. LIU. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International 2011, 21, 433–446.
[26] R. A. Swalin, J. Arents. Thermodynamics of Solids. Journal of The Electrochemical Society 1962.
[27] Brent Fultz. Vibrational thermodynamics of materials. In Progress in Materials Science 2010.
[28] S. Guo, C. T. Liu. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International 2011, 21, 433-446.
[29] David R. Gaskell. Introduction to the thermodynamics of materials. 3rd ed, Washington: Taylor & Francis 1995, 80-84.
[30] Y. Zhang, X. Yang, P. K. Liaw. Alloy design and properties optimization of high-entropy alloys. In JOM 2012, 64(7), 830–838.
[31] J. W. Yeh. Alloy design strategies and future trends in high-entropy alloys. Jom 2013, 65(12), 1759–1771.
[32] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc, S. J. Lin. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics 2007, 103, 41-46.
[33] K. Y. Tsai, M. H. Tsai, J. W. Yeh. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia 2013, 61, 4887-4897.
[34] Carlyn R. LaRosa, Mulaine Shiha, Céline Varvenne, Maryam Ghazisaeidi. Solid solution strengthening theories of high-entropy alloys. Materials Characterization 2019, 151, 310-317.
[35] J. Zhang, X. Li, Y. Zhang, F. Zhang, H. Wu, X.Z. Wang, Q. Zhou, H. Wang. Sluggish dendrite growth in an undercooled high entropy alloy. Intermetallics 2020, Vol.119.
[36] L. S. Zhang, G. L. Ma, L. C. Fu, J. Y. Tian. Recent Progress in High-entropy Alloys. Advanced Materials Research 2013, 631-632, 227-232.
[37] Y. C. Liao, P. S. Chen, C. H. Li, P. H. Tsai, J. S. C. Jang. Development of Novel Lightweight Dual‐Phase Al‐Ti‐Cr‐Mn‐V Medium‐Entropy Alloys with High Strength and Ductility. Entropy 2020, 22, 74.
[38] Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys. Intermetallics 2020, 117, 106673.
[39] Yong Zhao, Mingliang Wang, Hongzhi Cui, Yuqiao Zhao, Xiaojie Song, Yong Zeng, Xiaohua Gao, Feng Lu, Canming Wang, Qiang Song. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys. Journal of Alloys and Compounds 2019, 805, 585-596.
[40] Franz Müller, Bronislava Gorr, Hans-Jürgen Christ, Julian Müller, Benjamin Butz, Hans Chen, Alexander Kauffmann, Martin Heilmaier. On the oxidation mechanism of refractory high entropy alloys. Corrosion Science 2019, 159, 108161.
[41] P. S. Chen, Y. C. Liao, Y. T. Lin, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, I. Y. Tsao. Development of Novel Lightweight Al-Rich Quinary Medium-Entropy Alloys with High Strength and Ductility. Materials 2021, 14, 4223.
[42] R. Li, J. C. Gao, K. Fan. Study to microstructure and mechanical properties of Mg containing high entropy alloys, Materials Science Forum 2010, 650, 265-271.
[43] R. Li, J. C. Gao, K. Fan. Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum 2011, 686, 235-241.
[44] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758-1765.
[45] L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon,N. Emery, I. Guillot. New structure in refractory high-entropy alloys. Materials Letters 2014, 132, 123-125.
[46] Khaled M. Youssef, Alexander J. Zaddach, Changning Niu, Douglas L. Irving, Carl C. Koch. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99.
[47] N. D. Stepanov, N. Y. Yurchenko, D.V. Skibin, M. A. Tikhonovsky, G. A. Salishchev. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal of Alloys and Compounds 2015, 652, 266–280.
[48] Duancheng Ma, Mengji Yao, K.G. Pradeep, Cemal C. Tasan, Hauke Springer, Dierk Raabe. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015, 98, 288–296.
[49] S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chena, B.L. Shen. Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys. Vacuum 2019, 163, 263-268.
[50] Minku Choi, Ibrahim Ondicho, Nokeun Park, Nobuhiro Tsuji. Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure. Journal of Alloys and Compounds 2019, 780, 959-966.
[51] Yang Zhou, Dong Zhou, Xi Jin, Lu Zhang, Xingyu Du, Bangsheng Li. Design of non-equiatomic medium-entropy alloys. Sci. Rep. 2018, 8, 1236.
[52] N. D. Stepanov, D. G. Shaysultanov, R. S. Chernichenko, M. A. Tikhonovsky, S. V. Zherebtsov. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203.
[53] M. J. Yao, K. G. Pradeep, C. C. Tasan, D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr highentropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 2014, 72–73, 5–8.
[54] R. Cahn, P. Haasen. Physical metallurgy. 4th ed, Amsterdam: North-Holland.
[55] X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang. Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys. Journal of Alloys and Compounds 2020, 831.
[56] Y. C. Liao, W. T. Ye, P. S. Chen, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys, Intermetallics 2021, 135, 107213.
[57] A. Helth, U. Siegel, U. Ku¨hn, T. Gemming, W. Gruner, S. Oswald, T. Marr, J. Freudenberger, J. Scharnweber, C.G. Oertel, W. Skrotzki, L. Schultz, J. Eckert. Influence of boron and oxygen on the microstructure and mechanical properties of high-strength Ti66Nb13Cu8Ni6.8Al6.2 alloys. Acta Materialia 2013, 61, 3324–3334.
[58] J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping. Journal of Materials Science & Technology 2021, 78, 74–80.
[59] Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycookc, T. Hashimotob. Grain refining mechanism in the Al/Al–Ti–B system. Acta Materialia 2015, 84, 292–304.
[60] National Research Council, Division on Engineering and Physical Sciences, Board on Manufacturing and Engineering Design, Commission on Engineering and Technical Systems, Unit Manufacturing Process Research Committee. Unit Manufacturing Processes: Issues and Opportunities in Research, 1995
[61] Qingsong Fan, Bo Yuan, Meng Xie, Minghua Shi, Jun Zhou, Zhongbo Yang, Wenjin Zhao. Effects of hot rolling temperature and aging on the second phase particles of Zr-Sn-Nb-Fe zirconium alloy. Nuclear Materials and Energy 2019, 20, 100700.
[62] Xiaosheng Luan, Wenxiang Zhao, Zhiqiang Liang, Shihong Xiao, Guoxiang Liang, Yifan Chen, Shikun Zou, Xibin Wang. Experimental study on surface integrity of ultra-high-strength steel by ultrasonic hot rolling surface strengthening. Surface and Coatings Technology 2020, 392, 125745.
[63] Junjie He, Danli Zhu, Chao Deng, Kai Xiong, Jiyang Xie, Yong Mao, Jin Li. Microstructure evolution and deformation behavior of Au–20Sn eutectic alloy during hot rolling process. Journal of Alloys and Compounds 2020, 831, 154824.
[64] Y. C. Liao, P. S. Chen, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C Huang, H. J. Wu, I.Y. Tsao. Tailored rapid annealing to obtain heterostructured ultra-high-strength lightweight Ti-rich medium-entropy alloys. Results in Materials 2022, 16, 100342.
[65] Xiaolei Wu, Yuntian Zhu. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters 2017, 5,527-532.
[66] D. A. Hughes, N. Hansen, D. J Bammann. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia 2023, 48, 147–153.
[67] Marc André Meyers, Krishan Kumar Chawla. Mechanical behavior of materials. Cambridge University Press 2009.
[68] Junyang He, Surendra Kumar Makineni, Wenjun Lu, Yuanyuan Shang, Zhaoping Lu, Zhiming Li, Baptiste Gault. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Materialia 2020, 175, 1–6.
[69] Tianhao Wang, Shivakant Shukla, Mageshwari Komarasamy, Kaimiao Liu, Rajiv S. Mishra. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing. Materials Letters 2019, Volume 236, 472-475.
[70] Praveen Sathiyamoorthi, Hyoung Seop Kim. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Progress in Materials Science 2020, 100709.
[71] M. F. Ashby. The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1970, 21, 399–424.
[72] Xiaolei Wu, Muxin Yang, Fuping Yuan, Guilin Wu, Yujie Wei, Xiaoxu Huang, Yuntian Zhu. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences 2015, 112, 14501–14505.
[73] Muxin Yang, Yue Pan, Fuping Yuan, Yuntian Zhu, Xiaolei Wu. Back stress strengthening and strain hardening in gradient structure. Materials Research Letters 2016, 4, 145–151.
[74] M. X. Yang, F. P. Yuan, Q. G. Xie, Y. D. Wang, E. Ma, X. L. Wu. Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia 2016, 109, 213–222.
[75] Yuntian Zhu, Xiaolei Wu. Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters 2019, 7, 393–398.
[76] P. S. Chen, S. J. Shiu, P. H. Tsai, Y. C. Liao, J. S. C. Jang, H. J. Wu, S. Y. Chang, C. Y. Chen, I. Y. Tsao. Remarkable Enhanced Mechanical Properties of TiAlCrNbV Medium-Entropy Alloy with Zr Additions. Materials 2022, 15, 6324.
[77] Po-Sung Chen, Jun-Rong Liu, Pei-Hua Tsai, Yu-Chin Liao, Jason Shian-Ching Jang, Hsin-Jay Wu, Shou- Yi Chang, Chih-Yen Chen, I-Yu Tsao. Enhancing the Strength and Ductility Synergy of Lightweight Ti-Rich Medium-Entropy Alloys through Ni Microalloying. Materials. Submitted.
[78] 郭寶謄. 微量合金法摻雜硼對輕量中熵合金微結構改良與機械性質提升之研究. 國立中央大學2023.
[79] Rhiannon Phillips, Kenny Jolley, Ying Zhou, Roger Smith. Influence of temperature and point defects on the X-ray diffraction pattern of graphite. Carbon Trends 2021, 5, 100124
[80] J. G. M. van Berkum, A. C. Vermeulen, R. Delhez, T. H. de Keijser, E. J. Mittemeijer. Applicabilities of the Warren–Averbach analysis and an alternative analysis for separation of size and strain broadening. Journal of Applied Crystallography 1994, 27, 345–357.
[81] A. El kissani, L. Nkhaili, A. Ammar, K. Elassali, A. Outzourhit. Synthesis, annealing, characterization, and electronic properties of thin films of a quaternary semiconductor; copper zinc tin sulfide. Spectroscopy Letters 2016, 49, 343–347.
[82] Muxin Yang, Dingshun Yan, Fuping Yuan, Ping Jiang, Evan Ma, Xiaolei Wu. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proceedings of the National Academy of Sciences 2018, 115, 7224–7229.
[83] Qi Zhang, Shuofan Li, Yi Cao, Shilin Xu, Xianjie Zhang, Junbiao Wang, Chaorun Si. Nanostructure evolution of reticular nano-TiB whiskers reinforced titanium matrix composite subjected to ultrasonic shot peening. Journal of Alloys and Compounds 2023, 948, 169704
[84] Jae Bok Seol, Jae Wung Bae, Zhiming Li, Jong Chan Han, Jung Gi Kim, Dierk Raabe, Hyoung Seop Kim. Boron doped ultrastrong and ductile high-entropy alloys. Acta Materialia 2018, 151, 366–376.
[85] P. Esser; C. Schankies; V. Khalajzadeh; C. Beckermann. Advanced modeling of shrinkage porosity in castings. IOP Conference Series: Materials Science and Engineering 2020, 861, 012022.
[86] Yi Jia, Shulong Xiao, Jing Tian, Lijuan Xu,Yuyong Chen. Modeling of TiAl Alloy Grating by Investment Casting. Metals 2015, 5, 2328–2339.
[87] Tongzheng He, Yuyong Chen. Influence of Mold Design on Shrinkage Porosity of Ti-6Al-4V Alloy Ingots. Metals 2022, 12, 2122.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明