博碩士論文 110226086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.147.74.100
姓名 莊嘉程(Chia-Cheng Chuang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 全像片收縮模型
(Holograms shrinkage model)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本論文主要研究全像片在高強度環境下的收縮情況。根據全像片繞射公式,由於收縮,全像片在記錄時的參考光角度會與最佳讀取角度有差異以及參考光波長和最佳讀取波長會有差異。基於這兩點特性,本文採用兩種不同的方法測量收縮情況,從而獲得全像片在長時間高壓環境下的收縮量及其光學特性變化。此外,本文還在已知的收縮極限情況下,通過模擬高度收縮後的全像片,預測其光學特性,使其表現如同預期的光學特性。
摘要(英) This paper primarily investigates the shrinkage of holograms in high-intensity environments. According to the hologram diffraction formula, due to shrinkage, there will be differences between the reference light angle during recording and the optimal reading angle, as well as differences between the reference light wavelength and the optimal reading wavelength. Based on these two characteristics, this paper employs two different methods to measure the shrinkage, thereby obtaining the shrinkage amount and optical characteristics of the hologram under long-term high-pressure environments. Additionally, under known extreme shrinkage conditions, this paper simulates highly shrunk holograms to predict their optical characteristics, making them exhibit the expected optical properties.
關鍵字(中) ★ 光電
★ 全像
★ 收縮
★ 布拉格繞射
★ 體積全像
★ MR眼鏡
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄圖目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
第二章 理論 10
2-1 全像術概述 10
2-2全像技術原理 10
2-2-1 薄全像與體積全像 12
2-2-2 布拉格條件(Bragg condition) 13
2-3 全像片材料 21
2-4 全像片收縮測量 22
第三章 研究方法 24
3-1 實驗架構與拍攝全像片 24
3-2 加速老化實驗 26
3-3 穿透光譜收縮測量 27
3-4 角度位移收縮測量 32
3-4-1 ∆β對角度位移收縮測量的影響 38
3-4-2 對光校正 40
第四章 實驗結果 42
4-1高溫和高溫高濕比較 42
4-1-1高溫和高溫高濕處理收縮量比較 42
4-1-2未曝光全像片測試 43
4-2 全像片收縮測量結果 48
4-2-1反射式記錄全像片收縮 49
4-2-2穿透式記錄全像片收縮 58
4-2-3反覆高溫高濕處理測試 65
4-2-4乾燥經過高溫高濕處理全像片測試 67
4-3全像片收縮補償 69
第五章 結論 73
參考文獻 74
中英文名詞對照表 77
參考文獻 1. Burdea, G. C., & Coiffet, P, Virtual reality technology. (John Wiley & Sons, 2003).
2. LaValle, S. M. Virtual reality. (Cambridge university press, 2023).
3. Yuen, S. C. Y., Yaoyuneyong, G., & Johnson, E, “Augmented reality: An overview and five directions for AR in education,” Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11 (2011).
4. Azuma, R. T. “A survey of augmented reality,” Presence: teleoperators & virtual environments, 6(4), 355-385 (1997).
5. Nordin, G. P., Johnson, R. V., & Tanguay Jr, A. R.. Tanguay, “Diffraction properties of stratified volume holographic optical elements,” JOSA A 9(12) 2206-2217 (1992).
6. Zhao, C., Liu, J., Fu, Z., & Chen, R. T, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Applied physics letters 71(11), 1464-1466 (1997).
7. Solomashenko, A., Kuznetsov, A., Nikolaev, V., & Afanaseva, O, “Development of a holographic waveguide with thermal compensation for augmented reality devices,” Applied Sciences 12(21) 11281 (2022).
8. Gabor, D. Holography, 1948-1971.Science 177,299-313 (1972).
9. Hariharan, P, Optical Holography: Principles, techniques and applications. (Cambridge University Press, 1996).
10. Gabor, D, “A new Microscopic principle,” Nature 161, 777-778 (1948).
11. Gabor, D., Kock, W. E., & Stroke, G. W. “ Holography: The fundamentals, properties, and applications of holograms are reviewed,” Science 173(3991), 11-23 (1971).
12. Barbastathis, G., Balberg, M., & Brady, D. J, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811-813 (1999).
13. Kogelnik, H., “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
14. 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所 博士論文,中華民國九十八年。
15. Fernández, R., Gallego, S., Márquez, A., Francés, J., Fuster, V. N., Neipp, C., ... & Pascual, I, “Shrinkage measurement for holographic recording materials,” Holography: Advances and Modern Trends V. SPIE p. 64-72 (2017).
16. Moothanchery, M., Naydenova, I., Bavigadda, V., Martin, S., & Toal, V, “Real-time shrinkage studies in photopolymer films using holographic interferometry,” Real-Time Image and Video Processing 2012 Vol. 8437. SPIE, 2012.
17. Moothanchery, M., Bavigadda, V., Toal, V., & Naydenova, I. “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52, 8519-8527 (2013).
18. Kumar, M. (Ed.), Holographic Materials and Applications (BoD–Books on Demand 2019).
19. Ramos, G., Álvarez-Herrero, A., Belenguer, T., del Monte, F., & Levy, D, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Applied optics, 43(20), 4018-4024 (2004).
20. Hu, Y., Kowalski, B. A., Mavila, S., Podgórski, M., Sinha, J., Sullivan, A. C., ... & Bowman, C. N. “Holographic Photopolymer Material with High Dynamic Range (Δ n) via Thiol–Ene Click Chemistry,” ACS Applied Materials & Interfaces 12(39) 44103-44109 (2020).
21. 黃郁泓,體積全像光學元件之波長及角度選擇性,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
22. Bruder, F. K., Bang, H., Fäcke, T., Hagen, R., Hönel, D., Orselli, E., ... & Walze, G, “Precision holographic optical elements in Bayfol HX photopolymer,” Practical Holography XXX: Materials and Applications. Vol. 9771, 8-28, SPIE (2016).
23. Piao, J.A.; Li, G.; Piao, M.L.; Kim, N, “Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer,” J. Opt. Soc. Korea 17, 242–248(2013).
24. Shalit, A., Lucchetta, D. E., Piazza, V., Simoni, F., Bizzarri, R., & Castagna, R, “Polarization-dependent laser-light structured directionality with polymer composite materials,” Materials Letters, 81, 232–234 (2012).
25. Zhang, N., Liu, J., Han, J., Li, X., Yang, F., Wang, X., ... & Wang, Y, “Improved holographic waveguide display system,” Applied Optics.54, 3645–3649 (2015).
26. Leith, E. N., & Upatnieks, J, “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America, 52(10), 1123-1130(1962).
27. Melzer, J. E., & Moffitt, K, Head mounted displays, 1st Edition (CRC Press, 1997)
28. Sutherland, I. E, “A head-mounted three dimensional display,” fall joint computer conference, part I, p. 757-764 (1968).
29. Kaisu Isomäki & Katariina Pakarinen, “How extended reality can help in creating unique nature experiences?” https://www.labopen.fi/lab-pro/how-extended-reality-can-help-in-creating-unique-nature-experiences/
30. Daniel, “DreamGlass Air Portable Augmented Reality Screen,” https://gadgetsin.com/dreamglass-air-portable-augmented-reality-screen.htm.
31. Mirko Compagno, “Covid and Big Tech are driving Augmented Reality into healthcare,” https://mirkocompagno.wordpress.com/2021/06/18/covid-and-big-tech-are-driving-augmented-reality-into-healthcare/.
32. Gigante, M. A. Virtual reality: definitions, history and applications. In Virtual reality systems (Academic Press, 1993).
33. Snyder, A. W., & Love, J. D, Optical waveguide theory. (London, Chapman and hall 1983).
34. Okamoto, K, Fundamentals of optical waveguides. (Elsevier, 2021).
35. ar, M., Doll, T., kovi, J., & Scherer, A, “Design and fabrication of silicon photonic crystal optical waveguides,” Journal of lightwave technology, 18(10), 1402, (2000).
36. Levola, T, “Diffractive optics for virtual reality displays,” Journal of the Society for Information Display, 14(5), 467-475, (2006).
37. Scharon Harding, “North Focals Review: Stealthy, Stylish Smart Glasses,” https://www.tomshardware.com/reviews/north-focals-smart-glasses-ar,5968.html.
38. Chris Grayson, “Holographic Waveguides: What You Need To Know To Understand The Smartglasses Market,” https://www.uploadvr.com/waveguides-smar
指導教授 孫慶成 余業緯 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明