博碩士論文 111226015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.149.254.229
姓名 葉佳凱(Jia-Kai Ye)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 全像儲存系統之可連續變化之時間序列訊號
(Continuously Variable Time Series Signal in Holographic Data Storage System)
相關論文
★ 費奈爾透鏡之光學效率與雜散光分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 傳統全像儲存架構在進行多工記錄時,會隨著記錄頁數的增加,讀取時的繞射效率呈平方倍數下降。在讀寫過程中,各軌道的間距會受到記錄頁數的限制,導致在同樣範圍內能記錄的資訊量減少。此外,頁與頁之間的串音限制使得頁面間距不能太近,而過大的頁面間距會大幅增加馬達的轉矩。不僅如此,系統對於讀取位置的靈敏度要求極高,必須非常接近寫入位置才能讀取出資訊,因此在機械限制下,要達到高速且精準的讀取過程是非常困難的。
本論文提出的全像儲存系統克服了上述所提到的問題,通過改變傳統記錄和讀取的方式,不僅改善了多工記錄繞射效率受到M/#限制的情況,還改善了系統對於讀取位置高靈敏度的要求。此系統將多頁的資訊記錄在同一記錄區域中,並透過設計各組光柵的訊號光相位,得到位移疊加讀取的訊號,在不同位置下的干涉結果。
摘要(英) In traditional holographic storage systems, the diffraction efficiency during readout decreases exponentially as the number of recorded pages increases. The spacing between tracks during the read-write process is constrained by the number of recorded pages, which reduces the amount of information that can be stored within the same area. Furthermore, crosstalk between pages restricts how close the pages can be, while excessively large page spacing significantly increases the motor′s torque. Additionally, the system requires extremely high sensitivity to the readout position, necessitating very close proximity to the write position to retrieve information. Therefore, achieving high-speed and precise readout processes is extremely challenging under mechanical constraints.
This thesis proposes a holographic storage system that overcomes the aforementioned issues. By altering the traditional recording and readout methods, this system not only improves the diffraction efficiency of multiplexed recordings, which is limited by the M/#, but also reduces the system′s sensitivity to the readout position. This system records multiple pages of information within the same recording area and, by designing the signal light phases of each set of gratings, achieves displacement-added readout signals, resulting in interference at different positions.
關鍵字(中) ★ 全像儲存
★ 體積全像
★ 角度選擇性
★ 相位補償項
關鍵字(英) ★ Holographic data storage
★ Volume Holography
★ Angular Selectivity
★ Phase Compensation Term
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XVIII
第一章 緒論 1
1-1 研究動機 1
1-2 全像術簡介 3
1-3 全像儲存發展 4
1-4 本論文之前置研究 5
1-5 本論文架構 6
第二章 體積全像原理 7
2-1 全像術 7
2-2 布拉格條件 10
2-3 布拉格簡併 13
2-4 耦合波理論 14
2-5 相位疊加法 22
2-6 體積全像片的角度選擇性 24
2-7 M-NUMBER與全像儲存系統限制 26
第三章 儲存系統設計 30
3-1 系統架構 30
3-1-1 實驗架構 30
3-1-2 訊號調製 33
3-2 多工角度設計 35
3-3 參考光相位補償 36
3-4 系統的繞射效率提升M倍 39
第四章 多工記錄四頁疊加讀取實驗 42
4-1 實驗設計 42
4-2 四道參考光與訊號光設計 45
4-2-1 參考光設計 45
4-2-2 訊號光相位設計 46
4-3 實驗結果 55
4-4 實驗繞射效率 76
第五章 結論 81
參考文獻 84
附錄A 87
中英文名詞對照表 91
參考文獻 1. E. Burgener and J. Rydning, “High data growth and modern applications drive new storage requirements in digitally transformed enterprises,” Framingham: International Data Corporation 1, 1–17 (2022).
2. W. A. Bhat, “Is a data-capacity gap inevitable in big data storage?,” Computer 51(9), 54–62 (2018).
3. L. Dhar, K. Curtis, and T. Fäche, “Holographic data storage: Coming of age,” Nat. Photonics 2, 403–405 (2008).
4. D. Sarid and B. H. Schechtman, “A roadmap for optical data storage applications,” Opt. Photonics News 18(5), 32–37 (2007).
5. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, and R. M. Shelby, “Holographic data storage technology,” IBM journal of research and development 44(3), 341–368 (2000).
6. E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
7. European Computer Manufacturers Association, “Information Interchange on Holographic Versatile Disc (HVD) Recordable Cartridges – Capacity: 200 Gbytes per Cartridge,” https://ecma-international.org/publications-and-standards/standards/ecma-377/.
8. T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2007).
9. T. Shimura, D. Kim, L. Xin, M. Kawasaki, Y. Hayashi, and R. Fukimura, “Phase modulated time series signal holographic memory,” presented at the International Workshop on Holography and Related Technologies, Penang, Malaysia, 5-7 Nov. 2019.
10. D. Gabor, “A New Microscopi Prinnciple,” Nature 161, 777–778 (1948).
11. J. Hecht, “Short history of laser development,” Opt. Eng. 49(9), 091002–091002–091023 (2010).
12. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52(10), 1123–1130 (1962).
13. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393–400 (1963).
14. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
15. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90 geometry,” Opt. Commun. 117(1), 49–55 (1995).
16. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19(13), 993–994 (1994).
17. W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528–1529 (2003).
18. T. Francis, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81(6), 343–347 (1991).
19. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
20. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
21. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2), 171–176 (1991).
22. M. W. Chang, C. C. Sun, R. H. Tsou, W. Chang, and J. Y. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground glass,” presented at Practical Holography X SPIE, U.S., 25 March 1996.
23. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253–1260 (2001).
24. J. Heanue, M. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34(26), 6012–6015 (1995).
25. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561–3571 (2007).
26. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25(9), 610–612 (2000).
27. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
28. A. Pu, and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
29. G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, M. Jurich, R. M. Macfarlane, and R. M. Shelby, “High-density and high-capacity holographic data storage,” Asian Journal of Physics 10(2), 117–134 (2001).
30. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
31. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Review 12(2), 90–92 (2005).
32. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45(5), 910–914 (2006).
33. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402–1404 (2004).
34. 陳願丞,隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析,國立中央大學光電科學研究所碩士論文,中華民國一百一十年。
35. 黃崑豪,多波繞射疊加訊號法之參考光位置誤差分析,國立中央大學光電科學研究所碩士論文,中華民國一百一十年。
36. 關懷明,N倍繞射效率之體積全像多工技術,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
37. 陳奕墉,記錄於倒數空間高繞射效率之全像儲存系統,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
38. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
39. C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132–1134 (2005).
40. T. C. Teng, P. C. Ou, and C. C. Sun, “Volume holographic optical elements for point-to-point imaging with local cross talk,” Opt. Lett. 30(22), 3015–3017 (2005).
41. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909–2947 (1969).
42. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184–1185 (2003).
43. E. S. Maniloff and K. M. Johnson, “Maximized photorefractive holographic storage,” Journal of Applied physics 70(9), 4702–4707 (1991).
44. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
45. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902–4914 (2004).
46. G. Barbastathis, and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
指導教授 楊宗勳 余業緯(Tsung-Hsun Yang Yeh-Wei Yu) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明