博碩士論文 111226061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.119.126.244
姓名 林穎佑(Ying-You Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機光增益偵測器之探討與垂直式有機光敏電晶體之開發
(Studying on Photomultiplication-type organic photodetector and Development of Vertical Field Effect Organic Phototransistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文分為前、後兩段部分進行研究,前段部分專注於有機光偵測器的性能優化,透過光增益之效果,提高元件於感光時的光電流注入,藉此達到元件之外部量子效率(External Quantum Efficiency, EQE)、光響應度(Responsivity, R)方面的性能優化;而後段部分則將優化之元件與垂直式電晶體進行整合,完成垂直式有機光敏電晶體(Vertical Field Effect Organic Phototransistor, VFEOPD)之開發。
在優化有機光偵測器的過程中,本次實驗採用(1) 增益層、(2) 主動層高低摻雜 、(3) 增益層+主動層高低摻雜,此三種手段,達到光增益之效應,同時藉由元件電容量測以及模擬所得之激子產生率,瞭解各類型元件區之驅動原理。從結果可得知,優化後各元件之外部量子效率、光響應度皆有所提升,可確定該優化手段之可行性。
而在後半段部分,本次實驗嘗試將優化後的有機光增益偵測器與氧化鋅(ZnO)垂直式電晶體進行整合,完成垂直式有機光敏電晶體之開發。從實驗結果可得知,垂直式有機光敏電晶體相較於整合前的有機光增益偵測器,具有更高的元件性能表現,其外部量子效率可從83%提升至7277%、光響應度可從0.36 A/W提升31.19 A/W,且因該元件結合電晶體之電流控制性能以及有機光偵測器之偵測能力,使其可藉由閘電壓的施加,控制元件於可見光波段範圍的響應與偵測。
摘要(英) This paper can be divided into two main sections. The first section focuses on optimizing the performance of organic photodetectors by Photomultiplication to enhance the injection of photocurrent during device sensitivity. This optimization aims to improve external quantum efficiency, photoresponsivity, and other aspects of the devices. The second section integrates the optimized photodetector devices with vertical transistors to develop vertical phototransistors. The goal here is to achieve the development of Vertical Field Effect Organic Phototransistor through the integration of the optimized photodetector components.
In the research aimed at optimizing organic photodetectors, three approaches were employed: (1) buffer layer, (2) adjusting the doping levels of the active layer, and (3) combining a buffer layer with adjusted doping levels of the active layer. These strategies were utilized to achieve the effect of optical gain, thereby enhancing the injection of photocurrent during device sensitivity.
Finally, the optimized organic photodetectors were integrated with zinc oxide transistors to develop vertical phototransistors. Compared to the standalone organic photodetectors before integration, these vertical phototransistors exhibit significantly enhanced device performance. Specifically, the external quantum efficiency improved from 83% to 1994%, and the photoresponsivity increased from 0.36 A/W to 8.55 A/W. Additionally, they offer advantages such as high on/off ratio and compact device footprint. These characteristics make them suitable for sensing applications within the visible light spectrum.
This integration represents a significant advancement, demonstrating the capability to combine optimized organic photodetection with the functionalities of zinc oxide transistors to achieve superior performance in vertical phototransistor development.
關鍵字(中) ★ 有機二極體
★ 光增益
★ 垂直式場效電晶體
關鍵字(英) ★ Organic photodetector
★ Photomultiplication
★ Vertical Field Effect Transistor
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 有機光偵測器 2
1-3 有機光增益偵測器 3
1-4 場效電晶體 5
1-5 垂直式電晶體 5
1-6 研究目的與實驗動機 9
第二章 基本理論 10
2-1 有機半導體材料載子傳輸機制 10
2-2 光電二極體之工作原理 11
2-2-1 有機光偵測器工作原理 13
2-2-2 有機光增益偵測器工作原理 15
2-3 有機光偵測器之相關參數 17
2-3-1 外部量子效率 (External Quantum Efficiency, EQE) 17
2-3-2 光響應度 (Responsivity, R) 18
2-3-3 偵測度 (Detectivity, D*) 18
2-3-4 響應時間 (Response time) 19
2-4 有機光偵測器模擬之相關參數 20
2-4-1 光子能量損耗 (Energy dissipated, Q(z,λ)) 21
2-4-2 激子產生率 (Exciton generation rate, G(z,λ)) 21
2-5 垂直式電晶體之工作原理 22
2-6 垂直式電晶體之相關參數 26
2-6-1 轉移曲線與開/關電流比 26
第三章 實驗部分 27
3-1 實驗材料介紹 28
3-1-1 基板材料 28
3-1-2 主動層材料 28
3-1-3 增益層材料 30
3-1-4 垂直式電晶體介電層材料 30
3-1-5 垂直式電晶體半導體層材料 31
3-1-6 電極材料 31
3-2 實驗儀器 32
3-2-1 超音波震洗 32
3-2-2 紫外光臭氧清洗機 (UV-Ozone) 33
3-2-3 手套箱 (Glove Box) 34
3-2-4 旋轉塗佈機 (Spin Coater) 35
3-2-5 熱蒸鍍儀 (Thermal Evaporation Coater) 36
3-2-6 原子力沉積儀 (Atomic Layer Deposition) 37
3-2-7 半導體參數分析儀 (Semiconductor Parameter Analyzer, SPA) 39
3-2-8 阻抗分析儀 (LF Impedance Analyzer) 40
3-2-9 UV-VIS-NIR分光光譜儀 (UV-VIS-NIR Spectrophotometer) 40
3-2-10 手動光罩接合對準器 (Mask and Bond Aligner) 42
3-2-11 數位式示波器 (Digital Oscilloscope) 43
3-2-12 光電二極體 (Photodiode) 44
3-2-13 發光二極體 (Light Emitting Diode, LED) 45
3-3 元件製作流程 46
3-3-1 有機光偵測器製作流程 46
3-3-2 垂直式有機光敏電晶體製作流程 49
第四章 實驗結果與討論 54
4-1 材料薄膜之光學分析 54
4-1-1 主動層光學薄膜分析 54
4-1-2 增益層光學薄膜分析 55
4-2 有機光偵測器 56
4-2-1 基礎元件之性能表現 56
4-3 有機光增益偵測器 59
4-3-1 增益層型之性能表現 59
4-3-2 增益層型之電場模擬 61
4-3-3 高低摻雜型之性能表現 62
4-3-4 高低摻雜型之電場模擬 64
4-3-5 增益層搭配高低摻雜之性能表現 65
4-3-6 增益層搭配高低摻雜之電場模擬 68
4-4 垂直式有機光敏電晶體 69
4-4-1 垂直式有機光敏電晶體之驅動機制 70
4-4-2 垂直式有機光敏電晶體之性能表現 71
4-5有機光偵測器與垂直式有機光敏電晶體之性能比較 74
第五章 結論與未來展望 76
參考文獻 77
參考文獻 [1] K. Kudo and T. Moriizumi, "Spectrum-controllable color sensors using organic dyes," Applied Physics Letters, vol. 39, no. 8, pp. 609-611, 1981, doi: 10.1063/1.92820.
[2] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science, vol. 258, no. 5087, pp. 1474-1476, 1992.
[4] M. Hiramoto, K. Yoshimura, Y. Nakayama, S. Akita, T. Kawamura, and M. Yokoyama, "Photocurrent multiplication in amorphous silicon carbide films," Applied Physics Letters, vol. 59, no. 16, pp. 1992-1994, 1991, doi: 10.1063/1.106160.
[5] W. Wang, F. Zhang, L. Li, M. Gao, and B. Hu, "Improved Performance of Photomultiplication Polymer Photodetectors by Adjustment of P3HT Molecular Arrangement," ACS Appl Mater Interfaces, vol. 7, no. 40, pp. 22660-8, Oct 14 2015, doi: 10.1021/acsami.5b07522.
[6] J. Wang and Q. Zheng, "Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer," Journal of Materials Chemistry C, vol. 7, no. 6, pp. 1544-1550, 2019, doi: 10.1039/c8tc04962a.
[7] D. Guo et al., "Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000," Mater Horiz, vol. 8, no. 8, pp. 2293-2302, Aug 1 2021, doi: 10.1039/d1mh00776a.
[8] W. Wang et al., "Effect of photogenerated carrier distribution on performance enhancement of photomultiplication organic photodetectors," Organic Electronics, vol. 68, pp. 56-62, 2019, doi: 10.1016/j.orgel.2019.01.055.
[9] J. M. Melancon and S. R. Živanović, "Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer," Applied Physics Letters, vol. 105, no. 16, 2014, doi: 10.1063/1.4898000.
[10] L. Ma and Y. Yang, "Unique architecture and concept for high-performance organic transistors," Applied Physics Letters, vol. 85, no. 21, pp. 5084-5086, 2004, doi: 10.1063/1.1821629.
[11] A. J. Ben-Sasson et al., "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates," Applied Physics Letters, vol. 95, no. 21, 2009, doi: 10.1063/1.3266855.
[12] G. Lee et al., "Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway," Journal of Applied Physics, vol. 121, no. 2, 2017, doi: 10.1063/1.4974008.
[13] M. Greenman, G. Sheleg, C.-m. Keum, J. Zucker, B. Lussem, and N. Tessler, "Reaching saturation in patterned source vertical organic field effect transistors," Journal of Applied Physics, vol. 121, no. 20, 2017, doi: 10.1063/1.4984053.
[14] C. Zhang, H. You, Y. Hao, Z. Lin, and C. Zhu, "Effects of Optical Interference and Annealing on the Performance of Polymer/Fullerene Bulk Heterojunction Solar Cells," Edited by Leonid A. Kosyachenko, p. 1, 2011.
[15] N. Stutzmann, R. H. Friend, and H. Sirringhaus, "Self-aligned, vertical-channel, polymer field-effect transistors," Science, vol. 299, no. 5614, pp. 1881-1884, 2003.
[16] G. Sheleg, M. Greenman, B. Lussem, and N. Tessler, "Removing the current-limit of vertical organic field effect transistors," Journal of Applied Physics, vol. 122, no. 19, 2017.
[17] F. M. Sawatzki et al., "Balance of horizontal and vertical charge transport in organic field-effect transistors," Physical Review Applied, vol. 10, no. 3, p. 034069, 2018.
[18] X. Wu et al., "High-performance vertical field-effect organic photovoltaics," Nature Communications, vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-37174-9.
[19] R. Deng et al., "High‐Performance Polymer Photodetector Using the Non‐Thermal‐and‐Non‐Ultraviolet–Ozone‐Treated SnO2 Interfacial Layer," physica status solidi (RRL) – Rapid Research Letters, vol. 14, no. 3, 2019, doi: 10.1002/pssr.201900531.
[20] H. Y. Chen, M. K. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, "Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene," Nat Nanotechnol, vol. 3, no. 9, pp. 543-7, Sep 2008, doi: 10.1038/nnano.2008.206.
[21] Z. Zhao et al., "Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer," Journal of Materials Chemistry C, vol. 10, no. 20, pp. 7822-7830, 2022, doi: 10.1039/d2tc01297a.
[22] S. Yoon, G. S. Lee, K. M. Sim, M. J. Kim, Y. H. Kim, and D. S. Chung, "End‐Group Functionalization of Non‐Fullerene Acceptors for High External Quantum Efficiency over 150 000% in Photomultiplication Type Organic Photodetectors," Advanced Functional Materials, vol. 31, no. 1, 2020, doi: 10.1002/adfm.202006448.
[23] Y. Wang et al., "Fast and sensitive polymer photodetectors with extra high external quantum efficiency and large linear dynamic range at low working voltage bias," Organic Electronics, vol. 62, pp. 448-453, 2018, doi: 10.1016/j.orgel.2018.08.017.
[24] K. Yang et al., "Ultraviolet to near-infrared broadband organic photodetectors with photomultiplication," Organic Electronics, vol. 83, 2020, doi: 10.1016/j.orgel.2020.105739.
[25] M. Liu et al., "Highly sensitive, broad-band organic photomultiplication-type photodetectors covering UV-Vis-NIR," Journal of Materials Chemistry C, vol. 9, no. 19, pp. 6357-6364, 2021, doi: 10.1039/d1tc00555c.
[26] S. G. Han et al., "Photomultiplication‐Type Organic Photodetectors with Fast Response Enabled by the Controlled Charge Trapping Dynamics of Quantum Dot Interlayer," Advanced Functional Materials, vol. 31, no. 31, 2021, doi: 10.1002/adfm.202102087.
[27] Z. Zhao et al., "Photomultiplication Type Broad Response Organic Photodetectors with One Absorber Layer and One Multiplication Layer," J Phys Chem Lett, vol. 11, no. 2, pp. 366-373, Jan 16 2020, doi: 10.1021/acs.jpclett.9b03323.
[28] Y. S. Lau, Z. Lan, L. Cai, and F. Zhu, "High-performance solution-processed large-area transparent self-powered organic near-infrared photodetectors," Materials Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.2021.100708.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明