博碩士論文 111329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.15.21.215
姓名 余美齡(Mei-Ling Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 先進高熵電催化劑在水處理中的開發之氨分解和氫生產
(Development of Advanced High-Entropy Electro-Catalysts for Water Treatment: Ammonia Decomposition and Hydrogen Production)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
★ 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用★ 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方
★ 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑★ 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 水資源是當代一個關鍵性的全球性議題,尤其是污水引起的污染已成為亟需解決的緊迫問題。儘管可以通過分解污水中的氨(NH3)並回收殘留物來生產可用的淡水,但目前的最新催化氨分解技術在連續反應過程中存在穩定性方面的挑戰。在催化氨水中本研究通過快速煆燒和還原工藝開發了一種新型的高熵陶瓷(High-Entropy Ceramics, HEC)FeCoNiCuMn粉體。利用電化學氧化(electrochemical oxidation method, EO)方法催化氨溶液, 以HEC作為催化劑的電極,能夠在90分鐘內分解溶液中的99%氨,並具有良好的重複反應穩定性。此外,為了深入分析催化效果,本實驗研究了在不同定電流下的降解效率,並且在50mA定電流下表現出良好的降解性能,分解溶液中的99%氨。同時,我們也進行了對同一片高熵電極的重複降解實驗,並在同一片電極上重複四次分解反應,在第四次時催化劑仍能分解溶液中的90%氨。此外,我們在反應過程中同時產生氫氣,突顯了這種新型HECs催化劑在綠色能源領域中的應用前景。
摘要(英) Water resource is one of the critical, worldwide issue in the contemporary era, especially the pollution caused by wastewater, has become an urgent problem need to be addressed. Although usable freshwater can be produced by decomposing the ammonia (NH3) in wastewater and recycling the residue, the current state-of-the-art catalytic decomposition of NH3 faces challenges regarding the stability during continuous reaction. In this study, a novel high-entropy ceramics (HECs) catalyst for water purification is developed, which can be fabricated via rapid calcination and reduction methods. Leveraging the electrochemical oxidation (EO) method to catalyze the ammonia solution, these HECs are able to decompose 99% of ammonia in the solution within 90 minutes. Even after 4 cycles, the electrode maintained high efficiency, degrading 90% of ammonia in 90 minutes, showcasing its stability. Additionally, the simultaneous production of hydrogen during the reaction highlights the promising application of this novel HECs catalyst in the green energy field.
關鍵字(中) ★ 高熵催化
★ 氨分解
★ 電催化
★ 污染物降解
★ 氫氣生產
關鍵字(英) ★ High-entropy catalysis
★ ammonia decomposition
★ electrocatalysis
★ pollutant degradation
★ hydrogen production
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
第二章 文獻回顧 4
2.1 高熵材料特徵介紹 4
2.1.1 高熵材料四大效應 7
2.1.2 快速移動床熱解法 9
2.1.3 高熵材料作為催化劑未來面臨的挑戰與發展 13
2.2 氨水分解應用催化材料 17
2.2.1 硼參雜電極 17
2.2.2 碳酸錳高效電催化劑 18
2.3 高級氧化法 19
2.3.1 電氧化法 20
2.3.2 活性氯物質 24
第三章 實驗步驟 26
3.1 鐵鈷鎳銅錳氧化物高熵陶瓷製備 26
3.2 高熵陶瓷電極製備 27
3.3 電氧化法降解含氨廢水 28
3.3.1 電氧化法實驗 28
3.3.2 氨濃度測量 29
3.4 分析儀器及設備 30
第四章 結果與討論 32
4.1 鐵鈷鎳銅錳氧化物高熵陶瓷之材料分析 32
4.1.1 結晶及微結構分析 32
4.1.2 微觀形貌及元素分佈分析 33
4.1.3 高熵陶瓷元素比例分析 34
4.2 鐵鈷鎳銅錳氧化物高熵陶瓷於電氧化法降解含氨廢水之成效 35
4.2.1 鐵鈷鎳銅錳氧化物高熵陶瓷降解成效 35
4.2.2 反應前後高熵陶瓷催化電極的元素價態變化 37
4.2.3 反應前後高熵陶瓷催化電極黏著劑材料變化 47
4.3 氣態產物分析 48
第五章 結論 52
第六章 未來研究方向 53
參考文獻 54
參考文獻 1. Chen, T., C. Ni, and J. Chen, Nitrification–denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health, Part A, 2003. 38(10): p. 2157-2167.
2. Government, T.C., The Environmental Protection Bureau and the Department of Health are collaborating to strengthen the ammonia nitrogen standards at public sewage treatment plants, ensuring the water quality and ecological environment of rivers in Taipei City., D.o.E. Protection, Editor. 2021.
3. Zhang, J., et al., Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 2006. 7(3): p. 148-152.
4. Xie, P., et al., Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature communications, 2019. 10(1): p. 4011.
5. Yang, J.X., et al., Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions. ACS nano, 2021. 15(7): p. 12324-12333.
6. Chiu, C.-T., et al., Novel high-entropy ceramic/carbon composite materials for the decomposition of organic pollutants. Materials Chemistry and Physics, 2022. 275: p. 125274.
7. Li, C.-T., et al., High-entropy selenide catalyst for degradation of organic pollutants. Journal of Electroanalytical Chemistry, 2024: p. 118106.
8. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
9. Shao, L., et al., Effect of Ta and Ti content on high temperature elasticity of HfNbZrTa1− xTix refractory high-entropy alloys. International Journal of Refractory Metals and Hard Materials, 2021. 95: p. 105451.
10. Huo, W., et al., High-entropy materials for electrocatalytic applications: a review of first principles modeling and simulations. Materials Research Letters, 2023. 11(9): p. 713-732.
11. CORP., C.E.S., Wastewater treatment services (central taiwan science park in huwei science park), M.o. Environment, Editor. 2018.
12. Li, W., et al., Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021. 118: p. 100777.
13. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
14. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
15. Chen, S., et al., High-performance Pt–Co nanoframes for fuel-cell electrocatalysis. Nano letters, 2020. 20(3): p. 1974-1979.
16. Löffler, T., et al., Discovery of a multinary noble metal–free oxygen reduction catalyst. Advanced Energy Materials, 2018. 8(34): p. 1802269.
17. Xin, Y., et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. Acs Catalysis, 2020. 10(19): p. 11280-11306.
18. Manos, D., K. Miserli, and I. Konstantinou, Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems. Catalysts, 2020. 10(11): p. 1299.
19. Du, Y., et al., Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. Journal of hazardous materials, 2016. 308: p. 58-66.
20. Feng, Y. and K. Shih, Strong synergy in the activation of peroxymonosulfate with Cu-Fe spinel/γ-Al2O3 composites for atrazine degradation. 2019.
21. Zhang, E., et al., High efficiency manganese cobalt spinel structure catalytic ozonation ceramic membrane for in situ BPA degradation and membrane fouling elimination. Journal of Environmental Chemical Engineering, 2024. 12(1): p. 111774.
22. Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65: p. 1759-1771.
23. Ranganathan, S., Alloyed pleasures: Multimetallic cocktails. Current science, 2003. 85(5): p. 1404-1406.
24. Abdelhafiz, A., et al., Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Advanced Energy Materials, 2022. 12(35): p. 2200742.
25. Liu, M., et al., Entropy‐maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication‐assisted wet chemistry method under ambient conditions. Advanced Materials Interfaces, 2019. 6(7): p. 1900015.
26. Xu, Z., et al., Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings. Coatings, 2023. 13(7): p. 1167.
27. Gao, S., et al., Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nature communications, 2020. 11(1): p. 2016.
28. Peng, Z. and H. Yang, Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano today, 2009. 4(2): p. 143-164.
29. Li, H., et al., Multi‐sites electrocatalysis in high‐entropy alloys. Advanced Functional Materials, 2021. 31(47): p. 2106715.
30. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
31. Li, H., et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature communications, 2020. 11(1): p. 5437.
32. Huang, L., et al., Shape regulation of high-index facet nanoparticles by dealloying. Science, 2019. 365(6458): p. 1159-1163.
33. Tong, W., et al., Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. National Science Review, 2021. 8(1): p. nwaa088.
34. Xu, H., et al., Ultrafine Pt‐based nanowires for advanced catalysis. Advanced Functional Materials, 2020. 30(28): p. 2000793.
35. Wang, W., et al., Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy, 2020. 71: p. 104623.
36. Cavin, J., et al., 2D high‐entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Advanced Materials, 2021. 33(31): p. 2100347.
37. Gu, K., et al., Defect‐rich high‐entropy oxide nanosheets for efficient 5‐hydroxymethylfurfural electrooxidation. Angewandte Chemie, 2021. 133(37): p. 20415-20420.
38. Qiao, H., et al., A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021. 86: p. 106029.
39. Wang, X., et al., Continuous synthesis of hollow high‐entropy nanoparticles for energy and catalysis applications. Advanced Materials, 2020. 32(46): p. 2002853.
40. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced materials, 2019. 31(26): p. 1806236.
41. Zhou, Y., et al., A comprehensive review on wastewater nitrogen removal and its recovery processes. International Journal of Environmental Research and Public Health, 2023. 20(4): p. 3429.
42. Silva, J.A., Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustainability, 2023. 15(14): p. 10940.
43. Cesaro, Z., J. Thatcher, and R. Bañares-Alcántara, Techno-economic aspects of the use of ammonia as energy vector. Techno-Economic Challenges of Green Ammonia as an Energy Vector, 2021: p. 209-219.
44. Song, Y., et al., Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration. Chemosphere, 2022. 286: p. 131680.
45. Udachyan, I., et al., Manganese carbonate as an efficient electrocatalyst for the conversion of ammonia (NH 4+/NH 3) to dinitrogen. Sustainable Energy & Fuels, 2023. 7(17): p. 4088-4093.
46. Kokkinos, P., D. Venieri, and D. Mantzavinos, Advanced oxidation processes for water and wastewater viral disinfection. A systematic review. Food and Environmental Virology, 2021. 13(3): p. 283-302.
47. M′Arimi, M., et al., Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production. Renewable and Sustainable Energy Reviews, 2020. 121: p. 109669.
48. Fenti, A., et al., Performance testing of mesh anodes for in situ electrochemical oxidation of PFAS. Chemical Engineering Journal Advances, 2022. 9: p. 100205.
49. Garcia-Segura, S., J.D. Ocon, and M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents—A review. Process Safety and Environmental Protection, 2018. 113: p. 48-67.
50. He, Y., et al., Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separation and Purification Technology, 2019. 212: p. 802-821.
51. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica acta, 1994. 39(11-12): p. 1857-1862.
52. Yang, Y., Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control. Frontiers of Environmental Science & Engineering, 2020. 14(5): p. 85.
53. Najafinejad, M.S., et al., Application of electrochemical oxidation for water and wastewater treatment: an overview. Molecules, 2023. 28(10): p. 4208.
54. Deborde, M. and U. Von Gunten, Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water research, 2008. 42(1-2): p. 13-51.
55. Wang, W.-L., et al., Elimination of chlorine-refractory carbamazepine by breakpoint chlorination: Reactive species and oxidation byproducts. Water research, 2018. 129: p. 115-122.
56. Garcia-Segura, S., E. Mostafa, and H. Baltruschat, Electrogeneration of inorganic chloramines on boron-doped diamond anodes during electrochemical oxidation of ammonium chloride, urea and synthetic urine matrix. Water research, 2019. 160: p. 107-117.
57. Salvestrini, S., et al., Electro-oxidation of humic acids using platinum electrodes: an experimental approach and kinetic modelling. Water, 2020. 12(8): p. 2250.
58. Gao, X., et al., Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation. ACS Sustainable Chemistry & Engineering, 2018. 6(4): p. 5342-5348.
59. Meng, X., et al., Removal of chemical oxygen demand and ammonia nitrogen from high salinity tungsten smelting wastewater by one-step electrochemical oxidation: From bench-scale test, pilot-scale test, to industrial test. Journal of Environmental Management, 2023. 340: p. 117983.
60. Morrison, G.R., Microchemical determination of organic nitrogen with Nessler reagent. Analytical Biochemistry, 1971. 43(2): p. 527-532.
61. Salamah, U. and R. Andriyani, Risk Analysis of Health Workers in Slaughterhouses Due to Ammonia Gas Exposure. J. Kesehat. Lingkung, 2018. 10: p. 25.
62. Smyth, C.M., et al., WSe2-contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions. 2D Materials, 2017. 4(2): p. 025084.
63. Kozakov, A., et al. Crystal Structure, Phase and Elemental Composition and Chemical Bonding in Bi 1− XAX FeO 3±Y Systems (A= Sr, Ca; 0≤ X≤ 1) from X-ray Diffraction, Mössbauer, and X-ray Photoelectron Spectra. in Advanced Materials: Techniques, Physics, Mechanics and Applications. 2017. Springer.
64. Huang, P.-C., et al., Investigation of the corrosion behavior of AlCoCrFeNi high-entropy alloy in 0.5 M sulfuric acid solution using hard and soft X-ray photoelectron spectroscopy. Applied Surface Science, 2024. 648: p. 158942.
65. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221.
66. McIntyre, N. and M. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Analytical chemistry, 1975. 47(13): p. 2208-2213.
67. Davis, E.M., et al., Comparative study of Co3O4 (111), CoFe2O4 (111), and Fe3O4 (111) thin film electrocatalysts for the oxygen evolution reaction. Nature Communications, 2023. 14(1): p. 4791.
68. Jendrzejewska, I., et al., Structure and properties of nano-and polycrystalline Mn-doped CuCr2Se4 obtained by ceramic method and high-energy ball milling. Materials Research Bulletin, 2021. 137: p. 111174.
69. Ye, P., et al., Mechanochemical formation of highly active manganese species from OMS-2 and peroxymonosulfate for degradation of dyes in aqueous solution. Research on Chemical Intermediates, 2019. 45: p. 935-946.
70. Kong, X., et al., Adsorbed water promotes chemically active environments on the surface of sodium chloride. The Journal of Physical Chemistry Letters, 2023. 14(26): p. 6151-6156.
71. Yu, L., et al., Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS. Physical Chemistry Chemical Physics, 2017. 19(45): p. 30798-30803.
72. Mohammadpourfazeli, S., et al., Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC advances, 2023. 13(1): p. 370-387.
73. Shillito, L.M., Gas chromatography–mass spectrometry (GC/MS). Archaeological Soil and Sediment Micromorphology, 2017: p. 399-401.
74. Garcia, A. and C. Barbas, Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Metabolic profiling: Methods and protocols, 2011: p. 191-204.
75. Qian, Q., et al., Electrochemical Biomass Upgrading Coupled with Hydrogen Production under Industrial‐Level Current Density. Advanced Materials, 2023. 35(25): p. 2300935.
76. Yang, Y., et al., A rigorous electrochemical ammonia electrolysis protocol with in operando quantitative analysis. Journal of Materials Chemistry A, 2021. 9(19): p. 11571-11579.
77. Paracchino, A., et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 2011. 10(6): p. 456-461.
78. Wang, J., et al., Graphene porous foam loaded with molybdenum carbide nanoparticulate electrocatalyst for effective hydrogen generation. ChemSusChem, 2016. 9(8): p. 855-862.
79. Dong, Y., et al., Efficient and stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water. Chemistry–An Asian Journal, 2015. 10(8): p. 1660-1667.
80. Wang, Y., et al., A flexible paper-based hydrogen fuel cell for small power applications. International Journal of Hydrogen Energy, 2019. 44(56): p. 29680-29691.
81. Tilley, S.D., et al., Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Advanced Functional Materials, 2014. 24(3): p. 303-311.
82. Huang, Z., et al., One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation. Nano Energy, 2015. 12: p. 666-674.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明