博碩士論文 111329023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.145.173.67
姓名 吳奕廷(Yi-Tin Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方
(High Entropy Oxides for lithium-ion battery Anode and study the best ratio of Anode/Cathode)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
★ 先進高熵電催化劑在水處理中的開發之氨分解和氫生產★ 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用
★ 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑★ 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 近年來因著科技發展快速,鋰離子電池的普及率也隨之上升。本研究利用溶膠凝膠自動燃燒法合成具有單相岩鹽結構之高熵氧化物(High Entropy Oxides, HEOs),作為鋰離子電池之負極材料,並比較了不同酸鹼值之高熵氧化物的材料特徵及半電池電化學性能。此外,為了解決高熵材料在大電流底下的循環穩定度,本研究在製作高熵氧化物負極電極時,加入了具有鍊狀之導電奈米碳管(Carbon Nanotubes, CNTs),藉此強化電子在負極電極內的傳輸效能,達到改善循環穩定度的目的。但高熵氧化物一直存在著初期不可逆電容的問題,為了解決此問題,在與商用富含鎳之鋰鎳錳鈷氧化物正極(LiNi0.8Mn0.1Co0.1O2)組裝成全電池前,透過使用了負極預鋰化的方式,去除了高熵材料的不可逆電容(包含SEI層的初步生成),避免高熵氧化物負極消耗過多正極的鋰離子,造成全電池電容嚴重衰退之情形發生。此外,為了探討全電池最佳負極/正極電容比例(Anode/Cathode ratio),本研究也利用了COMSOL模擬分析軟體進行高熵氧化物負極和鋰鎳錳鈷氧化物正極半電池平衡電位測試,由分析結果來看,當A/C比取1.1時,出於工作電壓的考量,當整個電池充滿電達到高電壓的狀態時,負極的電池電量狀態(State Of Charge, SOC)會超出鋰離子可以容納的範圍;但當A/C比取1.5時,負極的SOC部分則落在鋰離子可以容納的範圍內,由此可見A/C比取1.5是比較適當的比例參數。
摘要(英) In recent years, the rapid development of technology has led to an increase in the popularity of lithium-ion batteries. This study synthesizes high entropy oxides (HEOs) with a single-phase rock-salt structure using the sol-gel auto combustion method as an anode material for lithium-ion batteries. In this study, we compares the material characteristics and electrochemical performance of half cells with HEOs at different pH values. To address the issue of cycling stability of high entropy materials at high current conditions, conductive carbon nanotubes (CNTs) were added during the preparation of the HEOs anode to provide additional pathways for lithium-ion transport, thereby improving cycling stability.However, HEOs have a persistent problem of initial irreversible capacity. To mitigate this, pre-lithiation of the anode was performed before assembling the full cell with a commercial nickel-rich lithium nickel manganese cobalt oxide cathode (LiNi0.8Mn0.1Co0.1O2). This pre-lithiation process allows for the formation of the solid electrolyte interface (SEI) layer on the surface of the anode, preventing excessive consumption of lithium ions from the cathode and avoiding severe capacity degradation of the full cell. Additionally, to determine the optimal anode/cathode (A/C) ratio for the full cell, COMSOL simulation software was used to analyze the equilibrium potential of half cells with HEOs anodes and lithium nickel manganese cobalt oxide cathodes. The analysis results indicate that when the A/C ratio is set to 1.1, the state of charge (SOC) of the anode exceeds the allowable range when the battery is fully charged to a high voltage. However, when the A/C ratio is increased to 1.5, the SOC of the anode remains within the normal range. Therefore, an A/C ratio of 1.5 is considered the more appropriate parameter.
關鍵字(中) ★ 鋰離子電池
★ 高熵氧化物
★ 溶膠凝膠自動燃燒法
★ 循環穩定度
★ 負極/正極容量比例
關鍵字(英)
論文目次 目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言及ESG指標 1
1-2 研究動機 2
1-3 電池種類介紹 3
第二章 基礎理論及文獻回顧 6
2-1 鋰離子電池介紹 6
2-1-1 鋰離子電池之運作原理 6
2-1-2 影響鋰離子電池運作性能的因素 8
2-1-3 負極/正極容量比(A/C比)介紹 8
2-2 全電池負極去除不可逆電容及預鋰化處理比較 9
2-3 高熵材料介紹及鋰離子電池領域應用 11
2-3-1 高熵材料的定義及其特性 11
2-3-2 高熵材料在鋰離子電池領域之應用 12
2-4 常見高熵氧化物製備方法及其優缺點比較 15
第三章 實驗步驟 21
3-1 實驗之化學藥品 21
3-2 高熵氧化物粉末製備 23
3-3 鋰離子電池電極製備 24
3-4 鋰離子半電池封裝流程 24
3-4-1 鈕扣型半電池封裝 24
3-4-2 袋裝型(軟包裝)半電池封裝 25
3-5 鋰離子全電池封裝流程 26
3-5-1 負極預鋰化處理 26
3-5-2 全電池封裝 27
3-6 實驗分析儀器 27
3-6-1 材料特徵分析 27
3-7 鋰離子電池電化學量測系統 30
3-7-1 循環伏安法 30
3-7-2 電化學阻抗圖譜 30
3-7-3 充放電率測試 31
3-7-4 恆電流長時間循環穩定性測試 31
第四章 結果與討論 32
4-1 高熵氧化物粉末材料特徵分析與討論 32
4-1-1 高熵氧化物粉末之X射線繞射儀分析 32
4-1-2 高熵氧化物粉末之粒徑分析 34
4-1-3 高熵氧化物粉末之感應耦合電漿分析 35
4-1-4 高熵氧化物粉末之掃描式電子顯微鏡分析 36
4-1-5 高熵氧化物粉末之X射線光電子能譜分析 38
4-2 高熵氧化物負極半電池電性測試分析與討論 40
4-2-1 循環伏安圖分析 40
4-2-2 電化學阻抗圖譜 41
4-2-3 充放電速率測試 42
4-2-4 恆電流長時間循環穩定性測試 43
4-3 全電池電性測試分析與討論 44
4-3-1 電化學阻抗圖譜 45
4-3-2 充放電率測試 45
4-3-3 恆電流長時間循環穩定性測試 47
4-4 全電池最佳負極/正極配方比討論 47
第五章 結論與未來工作 51
5-1 結論 51
5-2 未來工作 52
參考文獻 參考文獻
1. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
2. Duffner, F., et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021. 6(2): p. 123-134.
3. Zu, C., H. Yu, and H. Li, Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery. InfoMat, 2021. 3(6): p. 648-661.
4. Luo, J.-Y., et al., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature chemistry, 2010. 2(9): p. 760-765.
5. Shen, X., et al., Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry, 2018. 27(4): p. 1067-1090.
6. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced materials, 2019. 31(26): p. 1806236.
7. Aamlid, S.S., et al., Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023. 145(11): p. 5991-6006.
8. McCormack, S.J. and A. Navrotsky, Thermodynamics of high entropy oxides. Acta Materialia, 2021. 202: p. 1-21.
9. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
10. Han, X., et al., A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of power sources, 2014. 251: p. 38-54.
11. Krysify. Introduction and performance of battery types. 2023.
12. Wang, J., et al., Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420: p. 129739.
13. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2007. 164(1): p. 351-364.
14. Pan, Y., et al., Functional membrane separators for next-generation high-energy rechargeable batteries. National Science Review, 2017. 4(6): p. 917-933.
15. Jie, Y., et al., Advanced liquid electrolytes for rechargeable Li metal batteries. Advanced Functional Materials, 2020. 30(25): p. 1910777.
16. Zhang, W., et al., Colossal granular lithium deposits enabled by the grain‐coarsening effect for high‐efficiency lithium metal full batteries. Advanced Materials, 2020. 32(24): p. 2001740.
17. You, S., et al., Design strategies of Si/C composite anode for lithium‐ion batteries. Chemistry–A European Journal, 2021. 27(48): p. 12237-12256.
18. Mu, G., et al., Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries. Electrochimica Acta, 2022. 406: p. 139878.
19. Song, B.F., A. Dhanabalan, and S.L. Biswal, Evaluating the capacity ratio and prelithiation strategies for extending cyclability in porous silicon composite anodes and lithium iron phosphate cathodes for high capacity lithium-ion batteries. Journal of Energy Storage, 2020. 28: p. 101268.
20. Son, B., et al., Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries. Journal of Power Sources, 2013. 243: p. 641-647.
21. Jin, L., et al., Pre‐lithiation strategies for next‐generation practical lithium‐ion batteries. Advanced Science, 2021. 8(12): p. 2005031.
22. Wang, F., et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS nano, 2021. 15(2): p. 2197-2218.
23. Zhan, R., et al., Promises and challenges of the practical implementation of prelithiation in lithium‐ion batteries. Advanced Energy Materials, 2021. 11(35): p. 2101565.
24. Kim, H.J., et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano letters, 2016. 16(1): p. 282-288.
25. Meng, Q., et al., High-performance lithiated SiO x anode obtained by a controllable and efficient prelithiation strategy. ACS applied materials & interfaces, 2019. 11(35): p. 32062-32068.
26. Huang, Z., et al., Progress and challenges of prelithiation technology for lithium‐ion battery. Carbon Energy, 2022. 4(6): p. 1107-1132.
27. Xu, H., et al., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy & Environmental Science, 2019. 12(10): p. 2991-3000.
28. Yue, X.Y., et al., Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries. Advanced Materials, 2022. 34(15): p. 2110337.
29. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
30. George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature reviews materials, 2019. 4(8): p. 515-534.
31. Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Sci. China Mater, 2018. 61(1): p. 2-22.
32. Li, W., et al., Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021. 118: p. 100777.
33. Chang, X., et al., Phase engineering of high‐entropy alloys. Advanced Materials, 2020. 32(14): p. 1907226.
34. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 3400.
35. Qiu, N., et al., A high entropy oxide (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019. 777: p. 767-774.
36. Liu, X., et al., Molten salt synthesis, morphology modulation, and lithiation mechanism of high entropy oxide for robust lithium storage. Journal of Energy Chemistry, 2023. 86: p. 536-545.
37. Kheradmandfard, M., et al., Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Materials Chemistry and Physics, 2021. 262: p. 124265.
38. Triolo, C., et al., Evaluation of entropy‐stabilized (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2) O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries. Advanced Functional Materials, 2022. 32(32): p. 2202892.
39. Alshataif, Y.A., et al., Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Metals and Materials International, 2020. 26: p. 1099-1133.
40. Anandkumar, M. and E. Trofimov, Synthesis, properties, and applications of high-entropy oxide ceramics: Current progress and future perspectives. Journal of Alloys and Compounds, 2023: p. 170690.
41. Khan, N.A., et al., Nanostructured AlCoCrCu0. 5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Applied Surface Science, 2021. 553: p. 149491.
42. Ocelík, V., et al., Additive manufacturing of high-entropy alloys by laser processing. Jom, 2016. 68: p. 1810-1818.
43. Li, X., Additive manufacturing of advanced multi‐component alloys: bulk metallic glasses and high entropy alloys. Advanced Engineering Materials, 2018. 20(5): p. 1700874.
44. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
45. R&D, Z. Electrochemical analysis methods-Cyclic Voltammetry, CV. 2022.
46. Kim, T., et al., Applications of voltammetry in lithium ion battery research. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 14-25.
47. Feng, X., et al., Using probability density function to evaluate the state of health of lithium-ion batteries. Journal of Power Sources, 2013. 232: p. 209-218.
48. R&D, Z. Electrochemical AC Impedance Analysis. 2022.
49. Li, X., Q. Zha, and Y. Ni, Ni–Fe phosphate/Ni foam electrode: facile hydrothermal synthesis and ultralong oxygen evolution reaction durability. ACS sustainable chemistry & engineering, 2019. 7(22): p. 18332-18340.
50. Heubner, C., M. Schneider, and A. Michaelis, Diffusion‐limited C‐rate: a fundamental principle quantifying the intrinsic limits of Li‐ion batteries. Advanced Energy Materials, 2020. 10(2): p. 1902523.
51. Tsai, S.-H., et al., Applications of long-length carbon nano-tube (L-CNT) as conductive materials in high energy density pouch type lithium ion batteries. Polymers, 2020. 12(7): p. 1471.
52. Huang, L.-P., et al., Reversible high entropy oxide anode: Interfacial electrocatalysis for enhanced capacity and stability of LiNi0. 8Co0. 1Mn0. 1O2 lithium-ion batteries. Journal of Power Sources, 2024. 606: p. 234289.
53. Qi, K., et al., Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811 lithium-ion batteries up to 4.5 V. Applied Energy, 2022. 320: p. 119282.
54. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
55. Pastor-Fernández, C., et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. in 2016 IEEE Transportation Electrification Conference and Expo (ITEC). 2016. IEEE.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明