博碩士論文 111226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.145.49.90
姓名 林明威(Ming-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 出瞳成像對於使用體積全像光學元件的擴瞳光導之可視角分析
(Analysis of Field of View for Exit Pupil Expansion Light Guide using Volume Holographic Optical Elements by Exit Pupil Imaging)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 歐規之高對比度近遠燈設計與雜散光分析
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究★ 費奈爾透鏡之光學效率與雜散光分析
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析★ 多波繞射疊加訊號法之參考光位置誤差分析
★ 使用方解石於數位全像顯微系統的深度測量系統★ 陣列式燈具光學特性快速量測之研究
★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 當前市面所發表之頭戴式顯示器,主要遇到投影系統在使用者視角上的限制問題,同時需兼顧外觀及微型化的設計。因此,本文使用體積全像光學元件之光導設計來製作MR眼鏡,以達到頭戴式顯示器的輕量設計。
本論文主要的目的是分析使用具有擴瞳功能之一維光導系統時,所遇到的縱向可視角限制成因,並藉此替代二維擴瞳之縱向可視角放大。本文使用體積全像光學元件來製作一維光導,透過光導系統中各參數與出瞳成像的關係,來分析橫向及縱向可視角的影響成因,其中包括出瞳大小、波導厚度、光資訊在波導內之繞射角度、guiding distance等參數,透過實驗進行比較與驗證。
摘要(英) Current commercially available head-mounted displays (HMDs) primarily face the limitation of projection systems in the user′s field of view (FOV) while also requiring a lightweight and compact design. Therefore, this paper employs a waveguide design based on volume holographic optical elements (VHOE) to fabricate MR glasses, achieving a lightweight design for head-mounted displays.
The main purpose of this paper is to analyze the causes of the vertical field of view (FOV) limitations encountered when using a one-dimensional light guide with exit pupil expansion, and to use this to replace the vertical field of view enlargement of two-dimensional exit pupil expansion. In this paper, a volume holographic optical element (VHOE) is used to fabricate a one-dimensional light guide. The relationship between the parameters in the light guide system and the exit pupil imaging is used to analyze the influencing factors of the horizontal and vertical FOV, including exit pupil size, waveguide thickness, diffraction angle of optical information in the waveguide, and guiding distance. The results are compared and verified by experiments.
關鍵字(中) ★ 可視角
★ 眼動範圍
★ 出瞳成像
★ 擴瞳技術
★ 體積全像光學元件
關鍵字(英) ★ Field of View(FOV)
★ Eye Box
★ Exit Pupil Imaging
★ Exit Pupil Expansion
★ Volume Holographic Optical Elements(VHOE)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 背景介紹 1
1-2 全像術簡介 4
1-3 研究動機 7
1-4 前置研究 8
1-5 論文架構 8
第二章 實驗理論 9
2-1 薄全像與厚全像 9
2-2 布拉格條件 11
2-3 耦合波理論 14
2-4 相位疊加法 21
2-5 擴瞳技術 27
第三章 系統分析 29
3-1 光導系統可視角分析 29
3-2 出瞳虛像及深度分析 31
3-2-1 VHOE2之寬度 33
3-2-2 出瞳大小 34
3-2-3 波導厚度 36
3-2-4 波導內繞射角度 38
3-2-5 Guiding Distance 40
3-2-6 Eye Relief 42
3-2-7 出瞳與光導間的距離 43
3-3 系統限制視角分析 44
3-4 Eye Box理論值計算 45
第四章 實驗驗證與結果 47
4-1 無耦入透鏡情況下之出瞳虛像及深度分析之驗證 47
4-1-1 VHOE2之寬度 50
4-1-2 出瞳大小 52
4-1-3 波導內繞射角度 54
4-1-4 Guiding Distance 56
4-1-5 Eye Relief 58
4-1-6 出瞳與光導間的距離 61
4-2 系統限制視角分析之驗證 62
4-3 Eye Box理論值計算之驗證 66
4-4 球平耦入VHOE之光導設計 68
第五章 結論 74
參考文獻 75
中英名詞對照表 79
參考文獻 [1] A. Wang, “你不知道的AR進化史,” https://zhuanlan.zhihu.com/p/29090900.
[2] R. Woods, “Microsoft’s next HoloLens is reportedly coming in Q1 2019,” https://www.neowin.net/news/microsofts-next-hololens-is-reportedly-coming-in-q1-2019/.
[3] N. Cattari, F. Cutolo, R. D’amato, U. Fontana, and V. Ferrari, “Toed-in vs parallel displays in video see-through head-mounted displays for close-up view,” IEEE 7, 159698-159711 (2019).
[4] J. P. Rolland and H. J. P. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence 9(3), 287-309 (2009).
[5] A. Small, “VR/AR/MR: What’s the Difference,” https://www.linkedin.com/pulse/vrarmr-whats-difference-alyssa-small.
[6] C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, “Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective,” Optica 7(11), 1563-1578 (2020).
[7] M. Billinghurst and H. Kato, “Collaborative mixed reality,” presented at the First International Symposium on Mixed Reality, Yokohama, Japan, 261-284 March 1999.
[8] Y. Itoh, T. Langlotz, J. Sutton, and A. Plopski, “Towards Indistinguishable Augmented Reality: A survey on Optical See-through Head-mounted Displays,” ACM Computing Surveys (CSUR) 54(6), 1-36 (2021).
[9] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
[10] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
[11] C. C. Sun and P. P. Banerjee, “Volume holographic optical elements,” Opt. Eng. 43(9) (2004).
[12] D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
[13] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55(8), 981-986 (1965).
[14] E. Völkl, L. F. Allard, and D. C. Joy, Introduction to electron holography. (Springer Science & Business Media, New York, 1999).
[15] G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” IEEE 87(12), 2098-2120 (1999).
[16] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811-813 (1999).
[17] D Gabor and P. Sciences, “Microscopy by reconstructed wave-fronts,” The Royal Society Mathematical and Physical Sciences 197(1051), 454-487 (1949).
[18] C. T. Draper, C. M. Bigler, M. S. Mann, K. Sarma, and P. A .Blanche, “Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification,” Appl. Opt. 58(5), 251-257 (2019)
[19] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I. (Springer-Verlag, Berlin, 1988).
[20] B. R. David, Understanding diffraction in volume gratings and holograms. (InTech, New York, 2013).
[21] W. Klein, “Theoretical efficiency of Bragg devices,” IEEE 54(5), 803-804 (1966).
[22] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
[23] J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hall, New York, 2002).
[24] C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30(10), 1132-1134 (2005).
[25] C. C. Sun and P. P. Banerjee, “Volume holographic optical elements,” Opt. Eng. 43(9) (2004).
[26] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
[27] C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175(1-3), 67-74 (2000).
[28] Y. W. Yu, C. Y. Cheng, T. C. Teng, C. H. Chen, S. H. Lin, B. R. Wu, C. C. Hsu, Y. J. Chen, X. H. Lee, and C. Y. Wu, “Method of compensating for pixel migration in volume holographic optical disc (VHOD),” Opt. Express 20(19), 20863-20873 (2012).
[29] J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, ”Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Experss 24(6), 720-730 (2016).
[30] C. T. Draper, C. M. Bigler, M. S. Mann, K. Sarma, and P. A .Blanche, “Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification,” Appl. Opt. 58(5), 251-257 (2019).
[31] E. Pavel, M. Mihailescu, V. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Opt. Commun. 284(4), 930-933 (2011).
[32] D. Lanman and D. Luebke, “Near-Eye Light Field Displays,” ACM transactions on graphics (TOG) 32(6), 1-10 (2013).
[33] C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292-18301(2018).
[34] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, “Evaluating the Microsoft HoloLens through an augmented reality assembly application,” SPIE 10197, 282-297 (2017).
[35] M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452-2461 (1995).
[36] B. C. Kress, Optical architectures for augmented-, virtual-, and mixed-reality headsets. (SPIE, Bellingham, Washington, 2020).
[37] L. Eisen, M. Meyklyar, M. Golub, A. Friesem, I. Gurwich, and V. L. Weiss, “Planar configuration for image projection,” Appl. Opt. 45, 4005-4011 (2006).
[38] 余業緯,應用體積全像光學元件之布拉格窗於點對點成像之研究,國立中央大學光電所碩士論文,中華民國九十三年。
[39] 王語謙,光導式近眼顯示器之子畫面擷取技術,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
[40] 朱冠宇,基於卷積神經網路之光場顯示眼動追蹤模型,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
指導教授 余業緯(Yeh-Wei Yu) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明