博碩士論文 108389601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.15.192.89
姓名 沃迪納(Bayu Satriya Wardhana)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用於能量儲存和能量轉換的高度多孔 金屬基板
(Highly Porous Metallic Substrate for Energy Storage and Conversion Applications)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-24以後開放)
摘要(中) 摘要

隨著化石燃料儲量日益減少,尋求永續的能源解決方案已成為全球優先事項,其中儲能與電化學能源轉換裝置被視為最有潛力的方法,這些方法有效率、環保、無輻射危害,並且能夠提供高效能。關鍵的創新包括利用燃料電池進行電化學能量轉換以及將電能儲存在電池或超電容裝置,電化學電池中作為電子傳導的電極結構是這些裝置效能的核心技術。過去十數年中研究人員在電化學催化劑與電化學電極的高度多孔結構取得重大進展,這些具有高表面積、高穩定性、改善電子傳輸路徑的設計有效地提升了電化學電池的性能。
在儲能方面,我們先前的研究重點是利用氧化鎳(NiO)作為商用發泡鎳中的集電器來提升3D全固態微型超電容的性能,這項研究提出一種創新而直接的方法來製作具有大比表面積的電極藉以優化活性材料的應用。製作的方法首先將商用發泡鎳利用雷射切割成指叉狀結構並利用浸鍍法將鎳粉填充於發泡鎳中,並利用各種化學方法將奈米活性二氧化錳(MnO2)塗覆在發泡鎳上,所製作創新集電電極NF-V2的孔隙大小在200-600奈米,此結構相較於商用發泡鎳(NF)提供了30倍以上的比表面積,有效將活性材料負載量由1 mg/cm2提升至20 mg/cm2以上,實驗結果顯示這些高度多孔的3D電極結構具有顯著的效果,能量密度達到671 µW h/cm2,面積容量達到19.34 F/cm2,電容維持率在達到95%@5 mA/cm2。進一步將此高度多孔電極應用在微型超電容,可達到7.22 F/cm2面積容量和263.9 µWh/cm2能量密度性能。
在能量轉換方面,本研究並將高度多孔鎳電極結合氧化鐵(Fe3O4)以應用在提升水電解的氧析出反應(Oxygen Evolution Reaction, OER),透過調控電極孔隙度以及活性觸媒結合的參數調控嘗試提升效率,本研究製作了基於自製多孔鎳(NF-V3)的電極並以商用發泡鎳(NF)電極作為對照,首先利用浸鍍法將二價與三價鐵氧化物裝填在多孔鎳結構上,接著利用雷射進行鍛燒製作為Fe3O4/NF-V3電極,電化學測試結果揭示Fe3O4在增強反應動力學的關鍵作用,1 M KOH 溶液中在電流密度10 mA下Fe3O4/NF-V3電極的過電位為217.3 mV,低於NF-V3的361.4 mV。計時電流法量測結果顯示在155 mV過電位下經過5小時後電極仍展示優異穩定性與持久性能。
摘要(英) Abstract

As fossil fuel reserves dwindle, the quest for sustainable energy solutions has become a global priority. Among the most promising approaches are energy storage technologies and electrochemical-based energy conversion devices. These methods are efficient, environmentally friendly, free from radiation hazards, and capable of delivering high performance. Key innovations include converting electrochemical energy into usable forms through electrochemical cells like fuel cells and storing it in batteries or electrochemical supercapacitors. Central to the efficiency of these technologies is the architecture of the electrodes within electrochemical cells, which conduct electrons from one half-cell to another which is produced by chemical reactions in the system. Over the past decade, researchers have made significant strides in developing highly porous architectures for electrocatalyst and electrochemical electrodes. These designs boast large surface areas, enhanced stability, and improved charge transport pathways, significantly boosting the performance of electrochemical cells.
In energy storage, our previous study focused on enhancing the performance of 3D all-solid-state micro-supercapacitors by utilizing nickel oxide (NiO) as a current collector within commercial nickel foam. This study introduces an innovative and straightforward method for producing electrodes with a large specific surface area, optimizing the application of active materials. The process exploits the commercial nickel foam, which is laser-cut into an interdigitated structure and then filled with Ni-based powder using dip coating techniques. Various chemical reactions were employed to coat the nickel foam with the nano-active material MnO2. This resulted in a novel current collector, NF-V2, with a 200-600 nm porosity range. Compared to commercial nickel foam (NF), this new structure offers a 30-fold increase in specific surface area and a substantial rise in active material loading (> 20 mg/cm2, up from less than 1 mg/cm2). Experiments on these highly porous 3D architectural electrodes demonstrate remarkable results, including an energy density of 671 µW h/cm2, which is 25 times higher than electrodes without filler, an area capacity of 19.34 F/cm2, and capacitance retention exceeding 95% at 5 mA/cm2. Furthermore, in the field of solid-state applications for micro-supercapacitors (MSCs), the highly porous electrode achieves a commendable areal capacity of 7.22 F/cm2 and an energy density of 263.9 µW h/cm2, making it appropriate for MSCs applications.
In energy conversion, our recent endeavor has yielded a breakthrough: creating a highly porous Ni electrode adorned with Fe3O4 for the Oxygen Evolution Reaction (OER). This undertaking is driven by the ambition to bolster the efficiency of water electrolysis through meticulous adjustments to the electrode′s porosity and the integration of active catalyst materials. Two distinct types of electrodes were meticulously crafted for the electrolysis process: self-manufactured nickel foam (NF-V3) and commercial nickel foam (NF), serving as a benchmark for comparison. Employing a dip coating process, the Ni porous structures were embellished with iron (II, III) oxide (Fe3O4), followed by a meticulous calcination process utilizing laser technology, culminating in the creation of Fe3O4/NF-V3 electrodes. Electrochemical tests unveiled the pivotal role of Fe3O4 in enhancing reaction kinetics. In a 1 M KOH solution at a current density of 10 mA, the Fe3O4/NF-V3 electrode exhibited an overpotential of 217.3 mV, significantly lower than its counterpart lacking Fe3O4, which registered an overpotential of 361.4 mV under identical conditions. Moreover, despite minor disparities in mass loading—less than 5 mg—the variances in porosity exhibited negligible effects on the electrode′s functionality. Notably, chronoamperometry tests conducted for 5 hours at a 155 mV overpotential underscored the stability and enduring performance of Fe3O4/NF-V3 electrodes.
關鍵字(中) ★ 孔隙率
★ 表面積
★ 發泡鎳
★ 超級電容
★ 水電解
關鍵字(英) ★ porosity
★ surface area
★ nickel foam
★ supercapacitor
★ water electrolysis
論文目次 Table of Contents

Chinese Abstract ii
English Abstract iv
Acknowledgments vi
Table of Contents vii
List of Figures ix
List of Tables xii
Explanation of Symbols xiii
Chapter 1 Introduction 1
Chapter 2 Fundamentals of Porous Metallic Substrate 4
2.1 Metallic Substrate Basic Properties 4
2.1.1 Structural/Architectural 4
2.1.2 Dimensionality 5
2.1.3 Advantages and Disadvantages 5
2.1.4 Porous Metal Fabrication Methods 6
2.2 Porous Metallic Substrate in Electrochemistry 9
2.2.1 Porous Metallic Substrate in Energy Storage 10
2.3 Pore structure and electrochemical performance relationship 12
2.3.1 Theoretical Review 12
2.3.2 Key factors in highly porous structure 15
2.3.3 Techniques for characterizing pore structure 19
Chapter 3: Research 1 21
Highly nanoporous nickel foam as current collector in 3D-solid-state micro supercapacitor 21
3.1 Theoretical Background 21
3.1.1 Introduction to Supercapacitor 21
3.1.2 Supercapacitors Classification 22
3.1.3 Supercapacitor Material Selection 24
3.1.5 Electrochemical Supercapacitor Performance Evaluation 32
3.2 Literature Survey 34
3.3 Research Motivation 36
3.4 Experimental Procedure 36
3.4.1 Fabrication of porous metal structure 36
3.4.2 Characterization Technique 38
3.5 Result and Discusion 39
3.5.1 Structure and Morphological Characterization 39
3.5.2 Electrochemical Performance 40
3.6 Conclusion 45
Chapter 4: Research II 47
Highly Porous Ni electrode decorated with Fe3O4 for Oxygen Evolution Reaction (OER) 47
4.1 Theoretical Background 47
4.1.1 Introduction to Water Electrolysis 47
4.1.2 Thermodynamics of Water Electrolysis 47
4.1.3 Kinetics of Water Electrolysis 48
4.1.4 NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction 56
4.1.5 Performance Evaluation of Water Electrolysis Process 60
4.2 Literature Survey 64
4.3 Research Motivation 69
4.4 Experimental Procedure 70
4.4.1 Fabrication of Porous Metal Substrates for Water Electrolysis 70
4.4.2 Characterization Techniques 70
4.5 Result and Discussion 72
4.5.1 Structure and Morphological Characterization 72
4.5.2 Electrochemical Performance. 74
4.6 Conclusion 78
Chapter 6. Summary and Outlook 79
6.1 Summary 79
6.2 Outlook 80
Chapter 7. Recommendations for Future Work 81
Reference 83
Appendix 1. Figures 102
Appendix 2. Tables 125
參考文獻 Reference

[1] Bhojane, P., "Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding", J. Energy Storage, vol. 45, no. October 2021, p. 103654, 2022, doi: 10.1016/j.est.2021.103654.
[2] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R., "Review on supercapacitors: Technologies and materials", Renew. Sustain. Energy Rev., vol. 58, pp. 1189–1206, 2016, doi: 10.1016/j.rser.2015.12.249.
[3] Sk, M. M., Yue, C. Y., Ghosh, K., & Jena, R. K., "Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors", J. Power Sources, vol. 308, pp. 121–140, 2016, doi: 10.1016/j.jpowsour.2016.01.056.
[4] Ray A., Korkut D., and Saruhan B., "Efficient flexible all-solid supercapacitors with direct sputter-grown needle-like mn/mnox @graphite-foil electrodes and ppc-embedded ionic electrolytes", Nanomaterials, vol. 10, no. 9, pp. 1–13, 2020, doi: 10.3390/nano10091768.
[5] Attia, S. Y., Mohamed, S. G., Barakat, Y. F., Hassan, H. H., and Al Zoubi W., "Supercapacitor electrode materials: Addressing challenges in mechanism and charge storage", Review in Inorg. Chemistry, vol. 42, no. 1, pp. 53–88, 2022, doi: 10.1515/revic-2020-0022.
[6] Theerthagiri, J., Karuppasamy, K., Durai, G., Rana, A. U. H. S., Arunachalam, P., Sangeetha, K., Kuppusami, P., & Kim, H.-S., "Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: A brief review", Nanomaterials, vol. 8, no. 4, 2018, doi: 10.3390/nano8040256.
[7] Xie, Y., Zhang, J., Xu, H., & Zhou, T., "Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors", Chem. Eng. J., vol. 437, no. P2, p. 135493, 2022, doi: 10.1016/j.cej.2022.135493.
[8] Shaha, H. U., Wanga, F., Javed, M. S., Ahmad, M. A., Saleem, M., Zhan, J., Khan, Z. U. H., & Lia, Y., "In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors", J. Energy Storage, vol. 17, no. April, pp. 318–326, 2018, doi: 10.1016/j.est.2018.03.015.
[9] Wang, Y., Sun, L., Xiao, D., Du, H., Yang, Z., Wang, X., Tu, L., Zhao, C., Hu, F., & Lu, B., "Silicon-Based 3D All-Solid-State Micro-Supercapacitor with Superior Performance", ACS Appl. Mater. Interfaces, vol. 12, no. 39, pp. 43864–43875, Sep. 2020, doi: 10.1021/acsami.0c14441.
[10] Jiang, Q., Kurra, N., Xia, C., & Alshareef, H. N., "Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cut-and-Transfer Strategy", Adv. Energy Materials, vol. 7, no. 1, p. 1601257, Jan. 2017, doi: 10.1002/aenm.201601257.
[11] Afif, A., Rahman, S. M. H., Azad, A. T., Zaini, J., Islan, M. A., & Azad, A. K. "Advanced materials and technologies for hybrid supercapacitors for energy storage – A review", J. Energy Storage, vol. 25, no. July, p. 100852, 2019, doi: 10.1016/j.est.2019.100852.
[12] Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L., "Hierarchically porous materials: Synthesis strategies and structure design", Chem. Soc. Rev., vol. 46, no. 2, pp. 481–558, 2017, doi: 10.1039/c6cs00829a.
[13] Kyeremateng, N. A., Brousse, T., and Pech, D., "Microsupercapacitors as miniaturized energy-storage components for on-chip electronics", Nat. Nanotechnol., vol. 12, no. 1, pp. 7–15, 2017, doi: 10.1038/nnano.2016.196.
[14] Jensen, L. S., Kaul, C., Juncker, N. B., Thomsen, M. H., & Chaturvedi T., "Biohydrogen Production in Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review", Energies, vol. 15, no. 22, 2022, doi: 10.3390/en15228396.
[15] Liu, P., Wang, J., Wang, X., Liu, L., Yan, X., Wang, H., Lu, Q., Wang, F., & Ren, Z., "A superhydrophilic NiFe electrode for industrial alkaline water electrolysis", Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.07.253.
[16] Zhao, J., Zhang, J. J., Li, Z. Y., & Bu, X. H., "Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction", Small, vol. 16, no. 51, pp. 1–23, 2020, doi: 10.1002/smll.202003916.
[17] Trotochaud, L., Young, S. L., Ranney, J. K., & Boettcher, S. W., "Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation", J. Am. Chem. Soc., vol. 136, no. 18, pp. 6744–6753, 2014, doi: 10.1021/ja502379c.
[18] Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., Yoon, T., & Kim, K. S., "Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, vol. 7, no. 10, pp. 7196–7225, 2017, doi: 10.1021/acscatal.7b01800.
[19] Yu, C., Zhang, L., Shi, J., Zhao, J., Gao, J., & Yan, D., "A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties", Adv. Funct. Mater., vol. 18, no. 10, pp. 1544–1554, 2008, doi: 10.1002/adfm.200701052.
[20] Gibson, L. J., "Biomechanics of cellular solids", J. Biomech., vol. 38, no. 3, pp. 377–399, 2005, doi: 10.1016/j.jbiomech.2004.09.027.
[21] Egorov, V., and O’Dwyer, C., "Architected porous metals in electrochemical energy storage", Current Opinion in Electrochemistry, vol. 21, pp. 201–208, 2020, doi: 10.1016/j.coelec.2020.02.011.
[22] Wu, L., Li, Y., Fu, Z., and Su, B. L., "Hierarchically structured porous materials: Synthesis strategies and applications in energy storage", National Science Rev., vol. 7, no. 11, pp. 1667–1701, 2020, doi: 10.1093/nsr/nwaa183.
[23] Liu, Z., Yuan, X., Zhang, S., Wang, J., Huang, Q., Yu, N., Zhu, Y., Fu, L., Wang, F., Chen, Y., & Wu, Y., "Three-dimensional ordered porous electrode materials for electrochemical energy storage", NPG Asia Materials, vol. 11, no. 1, 2019, doi: 10.1038/s41427-019-0112-3.
[24] Yeo, S. J., Oh, M. J., and Yoo, P. J., "Structurally Controlled Cellular Architectures for High-Performance Ultra-Lightweight Materials", Adv. Materials., vol. 31, no. 34, pp. 1–26, 2019, doi: 10.1002/adma.201803670.
[25] Hedayat, N., Du, Y., and Ilkhani, H., "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods", Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 1221–1239, 2017, doi: 10.1016/j.rser.2017.03.095.
[26] Li-Yin, G., Hao-Kun, Y., Xuan, C., Wei-Dong, T., Xing-Ming, H., and Zhi-Quan, L., "The development of porous metallic materials: a short review of fabrication, characteristics, and applications", Phys. Scr., vol. 98, no. 12, p. 122001, 2023, doi: 10.1088/1402-4896/ad086c.
[27] Rashed, M. G., Ashraf, M., and Hazell, P. J., "Manufacturing Issues and the Resulting Complexity in Modeling of Additively Manufactured Metallic Microlattices", Appl. Mechanic and Materials, vol. 853, pp. 394–398, 2016, doi: 10.4028/www.scientific.net/amm.853.394.
[28] Singh, S., and Bhatnagar, N., "A survey of fabrication and application of metallic foams (1925–2017)", J. Porous Materials, vol. 25, no. 2, pp. 537–554, 2018, doi: 10.1007/s10934-017-0467-1.
[29] Sutygina, A., Betke, U., and Scheffler, M., "Open-Cell Aluminum Foams by the Sponge Replication Technique: A Starting Powder Particle Study", Adv. Eng. Materials., vol. 22, no. 5, pp. 24–26, 2020, doi: 10.1002/adem.201901194.
[30] Song, T., Yan, M., and Qian, M., "The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review", Corros. Sci., vol. 134, pp. 78–98, 2018, doi: 10.1016/j.corsci.2018.02.013.
[31] Xue, Y., Wang, X., Wang, W., Zhong, X., and Han, F., "Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting", Mater. Sci. Eng. A, vol. 722, pp. 255–262, 2018, doi: 10.1016/j.msea.2018.02.105.
[32] Rashed, M. G., Ashraf, M., Mines, R. A. W., and Hazell, P. J., "Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications", Materials and Design, vol. 95, pp. 518–533, 2016, doi: 10.1016/j.matdes.2016.01.146.
[33] Pang, Y., Cao, Y., Chu, Y., Liu, M., Snyder, K., MacKenzie, D., & Cao, C., "Additive Manufacturing of Batteries", Adv. Funct. Materials, vol. 30, no. 1, pp. 1–22, 2020, doi: 10.1002/adfm.201906244.
[34] Gulzar, U., Glynn, C., and O’Dwyer, C., "Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors", Curr. Opin. Electrochemistry, vol. 20, pp. 46–53, 2020, doi: 10.1016/j.coelec.2020.02.009.
[35] Mahmoud, D., Elbestawi, M. A., and Yu, B., "Process-structure-property relationships in selective laser melting of porosity graded gyroids", J. Med. Devices, Trans. ASME, vol. 13, no. 3, 2019, doi: 10.1115/1.4043736.
[36] Park, S.-I., Rosen, D. W., Choi, S.-K., & Duty, C. E., "Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing", Addit. Manufacturing, vol. 1, pp. 12–23, 2014, doi: 10.1016/j.addma.2014.07.002.
[37] Shaukat, U., Rossegger, E., and Schlögl, S., "A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization", Polymers (Basel)., vol. 14, no. 12, 2022, doi: 10.3390/polym14122449.
[38] Gao, Y., Lin, Y., Peng, Z., Zhou, Q., & Fan, Z., "Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors", Nanoscale, vol. 9, no. 46, pp. 18311–18317, 2017, doi: 10.1039/c7nr06234f.
[39] Wu, S., Hui, K. S., Hui, K. N., and Kim, K. H., "Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors", J. Material Chemistry A, vol. 4, no. 23, pp. 9113–9123, 2016, doi: 10.1039/c6ta02005d.
[40] Wu, H. B., Pang, H., & Lou, X. W. D., "Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors", Energy Environ. Sci., vol. 6, no. 12, pp. 3619–3626, 2013, doi: 10.1039/c3ee42101e.
[41] Park, S. H., Kaur, M., Yun, D., and Kim, W. S., "Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices", Langmuir, vol. 34, no. 37, pp. 10897–10904, 2018, doi: 10.1021/acs.langmuir.8b02404.
[42] Yu, Z., Cheng, Z., Tsekouras, G., Wang, X., Kong, X., Osada, M., & Dou, S. X., "High areal capacitance and rate capability using filled Ni foam current collector", Electrochimica Acta, vol. 281, pp. 761–768, 2018, doi: 10.1016/j.electacta.2018.06.007.
[43] Salleh, N. A., Kheawhom, S., and Mohamad, A. A., "Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application", Arab. J. Chem., vol. 13, no. 8, pp. 6838–6846, 2020, doi: 10.1016/j.arabjc.2020.06.036.
[44] Sun, P.-P., Zhang, Y.-H., Pan, G.-X., Yu, X., Shi, Q., Tian, B., Gao, J., & Shi, F.-N., "Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors", J. Alloys Compound., vol. 832, p. 154954, 2020, doi: 10.1016/j.jallcom.2020.154954.
[45] Zhang, H. and Braun, P. V., "Three-dimensional metal scaffold supported bicontinuous silicon battery anodes", Nano Letters, vol. 12, no. 6, pp. 2778–2783, 2012, doi: 10.1021/nl204551m.
[46] Needham, S. A., Wang, G. X., and Liu, H. K., "Synthesis of NiO nanotubes for use as negative electrodes in lithium-ion batteries", J. Power Sources, vol. 159, no. 1 SPEC. ISS., pp. 254–257, 2006, doi: 10.1016/j.jpowsour.2006.04.025.
[47] Geaney, H., McNulty, D., O′Connell, J., Holmes, J. D., and O′Dwyer, C., "Assessing Charge Contribution from Thermally Treated Ni Foam as Current Collectors for Li-Ion Batteries", J. Electrochem. Soc., vol. 163, no. 8, pp. A1805–A1811, 2016, doi: 10.1149/2.0071609jes.
[48] Ebrahim, R., Yeleuov, M., and Ignatiev, A., "3D Porous Nickel Anode for Low Temperature Thin Solid Oxide Fuel Cell Applications", Adv. Mater. Technol., vol. 2, no. 10, pp. 1–5, 2017, doi: 10.1002/admt.201700098.
[49] Wang, X., Jia, L., Li, K., Yan, D., Chi, B., Pu, J., & Jian, L., "Porous nickel-iron alloys as anode support for intermediate temperature solid oxide fuel cells: II. Cell performance and stability", Int. J. Hydrogen Energy, vol. 43, no. 45, pp. 21030–21036, 2018, doi: 10.1016/j.ijhydene.2018.09.142.
[50] Reisert, M., Berova, V., Aphale, A., Singh, P., and Tucker, M. C., "Oxidation of porous stainless steel supports for metal-supported solid oxide fuel cells", Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30882–30897, 2020, doi: 10.1016/j.ijhydene.2020.08.015.
[51] Chaudhari, N. K., Jin, H., Kim, B., and Lee, K., "Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting", Nanoscale, vol. 9, no. 34, pp. 12231–12247, 2017, doi: 10.1039/c7nr04187j.
[52] Kumar, A. and Bhattacharyya, S., "Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting", ACS Appl. Mater. Interfaces, vol. 9, no. 48, pp. 41906–41915, 2017, doi: 10.1021/acsami.7b14096.
[53] Shinagawa, T., Garcia-Esparza, A. T., and Takanabe, K., "Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion", Sci. Rep., vol. 5, no. August, pp. 1–21, 2015, doi: 10.1038/srep13801.
[54] Latif, U., Ur Rehman, Z., Maqsood, M. F., Raza, M. A., Ali, S., Iqbal, M. J., Mehdi, S. M. Z., & Lee, N., "In situ growth of nickel ammonium phosphate ribbons on nickel foam for supercapacitor applications", Int. J. Hydrogen Energy, vol. 44, no. 1, pp. 1–15, 2023, doi: 10.1039/c5ta10063a.
[55] Bu, F., Zhou, W., Xu, Y., Du, Y., Guan, C., and Huang, W., "Recent developments of advanced micro-supercapacitors: design, fabrication and applications", npj Flex. Electronics, vol. 4, no. 1, pp. 1–16, 2020, doi: 10.1038/s41528-020-00093-6.
[56] Zhou, L., Nyberg, K., and Rowat, A. C., "Understanding diffusion theory and Fick′s law through food and cooking", Adv. Physiology Education, vol. 39, no. 1, pp. 192–197, 2015, doi: 10.1152/advan.00133.2014.
[57] Vidal-Iglesias, F. J., Solla-Gullón, J., Rodes, A., Herrero, E., & Aldaz, A., "Understanding the Nernst equation and other electrochemical concepts: An easy experimental approach for students", J. Chem. Education, vol. 89, no. 7, pp. 936–939, 2012, doi: 10.1021/ed2007179.
[58] J. Bard, Allen and Faulkner, Larry R., "Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.", Russian J. Electrochemistry, vol. 38, no. 12, pp. 1364–1365, 2002, doi: 10.1023/A:1021637209564.
[59] De, P., Halder, J., Gowda, C. C., Kansal, S., Priya, S., Anshu, S., Chowdhury, A., Mandal, D., Biswas, S., Dubey, B. K., & Chandra, A., "Role of porosity and diffusion coefficient in porous electrode used in supercapacitors – Correlating theoretical and experimental studies", Electrochem. Sci. Adv., vol. 3, no. 1, pp. 1–15, 2023, doi: 10.1002/elsa.202100159.
[60] Zhao, C., Liu, Y., Beirne, S., Razal, J., and Chen, J., "Recent Development of Fabricating Flexible Micro-Supercapacitors for Wearable Devices", Adv. Mater. Technol., vol. 3, no. 9, pp. 1–16, 2018, doi: 10.1002/admt.201800028.
[61] Pan, Z., Yang, J., Kong, J., Loh, X. J., Wang, J., and Liu, Z., "Porous and Yet Dense Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges", Adv. Sci., vol. 9, no. 4, 2022, doi: 10.1002/advs.202103953.
[62] Zhang, Y., Cui, W., Li, L., Zhan, C., Xiao, F., and Quan, X., "Effect of aligned porous electrode thickness and pore size on bubble removal capability and hydrogen evolution reaction performance", J. Power Sources, vol. 580, no. May, p. 233380, 2023, doi: 10.1016/j.jpowsour.2023.233380.
[63] Ferrero, G. A., Preuss, K., Fuertes, A. B., Sevilla, M., and Titirici, M. M., "The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen-doped carbon microspheres", J. Mater. Chem. A, vol. 4, no. 7, pp. 2581–2589, 2016, doi: 10.1039/c5ta10063a.
[64] Wang, G., Zhang, L., and Zhang, J., "A review of electrode materials for electrochemical supercapacitors", Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012, doi: 10.1039/c1cs15060j.
[65] Caglar, M., Ilican, S., Caglar, Y., and Yakuphanoglu, F., "Electrical conductivity and optical properties of ZnO nanostructured thin film", Appl. Surface Science, vol. 255, no. 8, pp. 4491–4496, 2009, doi: 10.1016/j.apsusc.2008.11.055.
[66] Pandolfo, A. G. and Hollenkamp A. F., "Carbon properties and their role in supercapacitors", J. Power Sources, vol. 157, no. 1, pp. 11–27, 2006, doi: 10.1016/j.jpowsour.2006.02.065.
[67] Sholklapper, T. Z., Kurokawa, H., Jacobson, C. P., Visco, S. J. and De Jonghe, L. C., "Nanostructured solid oxide fuel cell electrodes", Nano Letters, vol. 7, no. 7, pp. 2136–2141, 2007, doi: 10.1021/nl071007i.
[68] Du, Y., Hedayat, N., Panthi, D., Ilkhani, H., Emley, B. J., and Woodson, T., "Freeze-casting for the fabrication of solid oxide fuel cells: A review", Materialia, vol. 1, no. July, pp. 198–210, 2018, doi: 10.1016/j.mtla.2018.07.005.
[69] Zheng, S., Li, Z., Wu, Z.-S., Dong, Y., Zhou, F., Wang, S., Fu, Q., Sun, C., Guo, L., & Bao, X., "High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors", ACS Nano, vol. 11, no. 4, pp. 4009–4016, 2017, doi: 10.1021/acsnano.7b00553.
[70] Dinha, T. M., Achoura, A., Vizireanuc, S., Dinescu, G., Nistord, L., Armstrong, K., Guaye, D., & Pech, D., "Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors", Nano Energy, vol. 10, pp. 288–294, 2014, doi: 10.1016/j.nanoen.2014.10.003.
[71] Zu, L., He, J., Liu, X., Zhang, L., and Zhou, K., "Effect of pore orientation on the catalytic performance of porous NiMo electrode for hydrogen evolution in alkaline solutions", Int. J. Hydrogen Energy, vol. 44, no. 10, pp. 4650–4655, 2019, doi: 10.1016/j.ijhydene.2018.12.224.
[72] Sinha, P., Datar, A., Jeong, C., Deng, X., Chung, Y. G., and Lin, L. C., "Surface Area Determination of Porous Materials Using the Brunauer-Emmett-Teller (BET) Method: Limitations and Improvements", J. Phys. Chem. C, vol. 123, no. 33, pp. 20195–20209, 2019, doi: 10.1021/acs.jpcc.9b02116.
[73] Giesche, H., "Mercury porosimetry: A general (practical) overview", Particel and Particel Syst. Charact., vol. 23, no. 1, pp. 9–19, 2006, doi: 10.1002/ppsc.200601009.
[74] Ziel, R., Haus, A., and Tulke, A., "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membrane Sci., vol. 323, no. 2, pp. 241–246, 2008, doi: 10.1016/j.memsci.2008.05.057.
[75] Sharma, K., Pareek, K., Rohan, R., and Kumar, P., "Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite", Int. J. Energy Research, vol. 43, no. 1, pp. 604–611, 2019, doi: 10.1002/er.4277.
[76] Iro, Z. S., Subramani, C., and Dash, S. S., "A brief review on electrode materials for supercapacitor", Int. J. Electrochem. Sci., vol. 11, no. 12, pp. 10628–10643, 2016, doi: 10.20964/2016.12.50.
[77] Libich, J., Máca, J., Vondrák, J., Čech, O., and Sedlaříková, M., "Supercapacitors: Properties and applications", J. Energy Storage, vol. 17, no. March, pp. 224–227, 2018, doi: 10.1016/j.est.2018.03.012.
[78] Abdisattar, A., Yeleuov, M., Daulbayev, C., Askaruly, K., Tolynbekov, A., Taurbekov, A., & Prikhodko, N., "Recent advances and challenges of current collectors for supercapacitors", Electrochemistry Communication, vol. 142, no. August, p. 107373, 2022, doi: 10.1016/j.elecom.2022.107373.
[79] Chen, G. Z., "Supercapacitor and supercapattery as emerging electrochemical energy stores", Int. Materials Review, vol. 62, no. 4, pp. 173–202, 2017, doi: 10.1080/09506608.2016.1240914.
[80] Gandla, D., Chen, H., and Tan, D. Q., "Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon", Mater. Res. Express, vol. 7, no. 8, 2020, doi: 10.1088/2053-1591/abaf40.
[81] Sahoo, S., Kumar, R., Joanni, E., Singh, R. K., and Shim, J. J., "Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors", J. Mater. Chem. A, vol. 10, no. 25, pp. 13190–13240, 2022, doi: 10.1039/d2ta02357a.
[82] Zhang, Y., Yu, S., Lou, G., Shen, Y., Chen, H., Shen, Z., Zhao, S., Zhang, J., Chai, S., & Zou, Q., "Review of macroporous materials as electrochemical supercapacitor electrodes", J. Mater. Sci., vol. 52, no. 19, pp. 11201–11228, 2017, doi: 10.1007/s10853-017-0955-3.
[83] Vandeginste, V., "A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors", Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020862.
[84] Im, J. S., Kang, S. C., Lee, S. H., and Lee, Y. S., "Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification", Carbon, vol. 48, no. 9, pp. 2573–2581, 2010, doi: 10.1016/j.carbon.2010.03.045.
[85] Leitner, K., Lerf, A., Winter, M., Besenhard, J. O., Villar-Rodil, S., Suárez-García, F., Martínez-Alonso, A., & Tascón, J. M. D., "Nomex-derived activated carbon fibers as electrode materials in carbon-based supercapacitors", J. Power Sources, vol. 153, no. 2, pp. 419–423, 2006, doi: 10.1016/j.jpowsour.2005.05.078.
[86] Xu, J., Ruan, C., Li, P., and Xie, Y., "Excessive nitrogen doping of tin dioxide nanorod array grown on activated carbon fibers substrate for wire-shaped micro supercapacitor", Chem. Eng. J., vol. 378, p. 122064, 2019, doi: 10.1016/j.cej.2019.122064.
[87] Tang, Q., Chen, X., Zhou, D., and Liu, C., “Biomass-derived hierarchical porous carbon/silicon carbide composite for electrochemical supercapacitor", Colloids Surfaces A Physicochem. Eng. Asp., vol. 620, no. January, p. 126567, 2021, doi: 10.1016/j.colsurfa.2021.126567.
[88] Laszczyk, K. U., Futaba, D. N., Kobashi, K., Hata, K., Yamada, T., and Sekiguchi, A., "The limitation of electrode shape on the operational speed of a carbon nanotube-based micro-supercapacitor", Sustain. Energy Fuels, vol. 1, no. 6, pp. 1282–1286, 2017, doi: 10.1039/C7SE00101K.
[89] Wang, R., Luo, S., Xiao, C., Chen, Z., Li, H., Asif, M., Chan, V., Liao, K., & Sun, Y., "MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance", Electrochim. Acta, vol. 386, p. 138420, 2021, doi: 10.1016/j.electacta.2021.138420.
[90] Yang, H. J., Lee, J.-W., Seo, S. H., Jeong, B., Lee, B., Do, W. J., Kim, J. H., Cho, J. Y., Jo, A., Jeong, H. J., Jeong, S. Y., Kim, G.-H., Lee, G.-W., Shin, Y.-E., Ko, H., Han, J. T., & Park, J. H., "Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes", Nano Energy, vol. 86, no. February, p. 106083, 2021, doi: 10.1016/j.nanoen.2021.106083.
[91] Shao, Y., Li, J., Li, Y., Wang, H., Zhang, Q., and Kaner, R. B., "Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films", Mater. Horizons, vol. 4, no. 6, pp. 1145–1150, 2017, doi: 10.1039/c7mh00441a.
[92] He, D., Marsden, A. J., Li, Z., Zhao, R., Xue, W., and Bissett, M. A., "A single step strategy to fabricate graphene fibers via electrochemical exfoliation for micro-supercapacitor applications", Electrochim. Acta, vol. 299, pp. 645–653, 2019, doi: 10.1016/j.electacta.2019.01.034.
[93] Kim, D.‐J, "Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions", J. Am. Ceram. Soc., vol. 72, no. 8, pp. 1415–1421, 1989, doi: 10.1111/j.1151-2916.1989.tb07663.x.
[94] Yang, J., Lian, L., Ruan, H., Xie, F., and Wei, M., "Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application", Electrochimica Acta, vol. 136, pp. 189–194, 2014, doi: 10.1016/j.electacta.2014.05.074.
[95] Dai, M., Zhao, D., and Wu, X., "Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors", Chinese Chem. Lett., vol. 31, no. 9, pp. 2177–2188, 2020, doi: 10.1016/j.cclet.2020.02.017.
[96] Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., & Bao, Z., "Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping", Nano Lett., vol. 11, no. 10, pp. 4438–4442, 2011, doi: 10.1021/nl2026635.
[97] Yu, D., Zhang, Z., Meng, Y., Teng, Y., Wu, Y., Zhang, X., Sun, Q., Tong, W., Zhao, X., & Liu, X., "The synthesis of hierarchical ZnCo2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors", Inorg. Chem. Front., vol. 5, no. 3, pp. 597–604, 2018, doi: 10.1039/c7qi00706j.
[98] Wang, Y., Song, Y., and Xia, Y., "Electrochemical capacitors: Mechanism, materials, systems, characterization and applications", Chem. Soc. Rev., vol. 45, no. 21, pp. 5925–5950, 2016, doi: 10.1039/c5cs00580a.
[99] Gao, H. and Lian, K., "Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review", RSC Adv., vol. 4, no. 62, pp. 33091–33113, 2014, doi: 10.1039/c4ra05151c.
[100] Huang, C., Zhang, J., Young, N. P., Snaith, H. J., and Grant P. S., "Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications", Sci. Rep., vol. 6, no. April, pp. 1–15, 2016, doi: 10.1038/srep25684.
[101] Ben Cheikh, Z., El Kamel, F., Gallot-Lavallée, O., Soussou, M. A., Vizireanu, S., Achour, A., & Khirouni, K., "Hydrogen doped BaTiO3 films as solid-state electrolyte for micro-supercapacitor applications", J. Alloys Compound, vol. 721, pp. 276–284, 2017, doi: 10.1016/j.jallcom.2017.06.019.
[102] Huang, W., Li, J., and Xu, Y., "Nucleation and growth of porous MnO2 coatings prepared on nickel foam and evaluation of their electrochemical performance", Materials (Basel)., vol. 11, no. 5, 2018, doi: 10.3390/ma11050716.
[103] Devi, R., Kumar, V., Kumar, S., Bulla, M., Sharma, S., and Sharma A., "Electrochemical Analysis of MnO2 (α, β, and γ)-Based Electrode for High-Performance Supercapacitor Application", Appl. Sci., vol. 13, no. 13, p. 7907, Jul. 2023, doi: 10.3390/app13137907.
[104] Ren, G., Pan, X., Bayne, S., and Fan, Z., "Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam", Carbon, vol. 71, pp. 94–101, 2014, doi: 10.1016/j.carbon.2014.01.017.
[105] Chodankar, N. R., Pham, H. D., Nanjundan, A. K., Fernando, J. F. S., Jayaramulu, K., Golberg, D., Han, Y.-K., & Dubal, D. P., "True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors", Small, vol. 16, no. 37, pp. 1–35, 2020, doi: 10.1002/smll.202002806.
[106] Ying, Z., Zhao, S., Yue, J., Ju, T., Zhang, Y., Xie, J., & Wang, Q., "3D hierarchical CuS micro fl owers constructed on copper powders filled nickel foam as advanced binder-free electrodes", J. Alloys Compd., vol. 821, p. 153437, 2020, doi: 10.1016/j.jallcom.2019.153437.
[107] Wei, M., Wu, X., Yao, Y., Yu, S., Sun, R., and Wong, C., "Toward High Micro-Supercapacitive Performance by Constructing Graphene-Supported NiMoS4 Hybrid Materials on 3D Current Collectors", ACS Sustain. Chem. Eng., vol. 7, no. 24, pp. 19779–19786, Dec. 2019, doi: 10.1021/acssuschemeng.9b04582.
[108] Zhang, W., Yu, Z., Chen, Z., and Li, M., "Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure", Mater. Lett., vol. 67, no. 1, pp. 327–330, 2012, doi: 10.1016/j.matlet.2011.09.114.
[109] Lee, J. R. and Kim, Y. H., "Agglomeration of nickel oxide particle during hydrogen reduction at high temperature in a fluidized bed reactor", Chem. Eng. Res. Des., vol. 168, pp. 193–201, 2021, doi: 10.1016/j.cherd.2021.02.005.
[110] Mathis, T. S., Kurra, N., Wang, X., Pinto, D., Simon, P., and Gogotsi, Y., "Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems", Adv. Energy Mater., vol. 9, no. 39, 2019, doi: 10.1002/aenm.201902007.
[111] Zhang, G., Wang, T., Yu, X., Zhang, H., Duan, H., and Lu, B., "Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors", Nano Energy, vol. 2, no. 5, pp. 586–594, 2013, doi: 10.1016/j.nanoen.2013.07.008.
[112] Wang, J. G., Kang, F., and Wei, B., "Engineering of MnO2-based nanocomposites for high-performance supercapacitors", Prog. Mater. Sci., vol. 74, pp. 51–124, 2015, doi: 10.1016/j.pmatsci.2015.04.003.
[113] Harris, A. R., Grayden, D. B., and John, S. E., "Electrochemistry in a Two- or Three-Electrode Configuration to Understand Monopolar or Bipolar Configurations of Platinum Bionic Implants", Micromachines, vol. 14, no. 4, 2023, doi: 10.3390/mi14040722.
[114] Shin, J., Seo, J. K., Yaylian, R., Huang, A., and Meng, Y. S., "A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems", International Materials Rev., vol. 65, no. 6, pp. 356–387, 2020, doi: 10.1080/09506608.2019.1653520.
[115] You, B., Jiang, N., Sheng, M., Bhushan, M. W., and Sun, Y., "Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting", ACS Catalysis, vol. 6, no. 2, pp. 714–721, 2016, doi: 10.1021/acscatal.5b02193.
[116] Angeles-Olvera, Z., Crespo-Yapur, A., Rodríguez, O., Cholula-Díaz, J. L., Martínez, L. M., & Videa, M., "Nickel-Based Electrocatalysts for Water Electrolysis", Energies, vol. 15, no. 5, p. 1609, Feb. 2022, doi: 10.3390/en15051609.
[117] Aykut, Y., & Bayrakçeken Yurtcan, A., "Nanostructured electrocatalysts for low-temperature water splitting: A review", Electrochim. Acta, vol. 471, no. October, 2023, doi: 10.1016/j.electacta.2023.143335.
[118] Yan, Y., Xia, B. Y., Zhao, B., and Wang, X., "A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting", J. Mater. Chem. A, vol. 4, no. 45, pp. 17587–17603, 2016, doi: 10.1039/C6TA08075H.
[119] Medford, A. J., Vojvodic, A., Hummelshøj, J. S., Voss, J., Abild-Pedersen, F., Studt, F., Bligaard, T., Nilsson, A., & Nørskov, J. K., "From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis", J. Catalysis, vol. 328, pp. 36–42, 2015, doi: 10.1016/j.jcat.2014.12.033.
[120] Wang, C., Jin, L., Shang, H., Xu, H., Shiraishi, Y., and Du, Y., "Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction", Chinese Chem. Lett., vol. 32, no. 7, pp. 2108–2116, 2021, doi: 10.1016/j.cclet.2020.11.051.
[121] Song, J., Wei, C., Huang, Z.-F., Liu, C., Zeng, L., Wang, X., & Xu, Z. J., "A review on fundamentals for designing oxygen evolution electrocatalysts", Chem. Soc. Rev., vol. 49, no. 7, pp. 2196–2214, 2020, doi: 10.1039/c9cs00607a.
[122] Hou, J., Wu, Y., Zhang, B., Cao, S., Li, Z., and Sun, L., "Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting", Adv. Funct. Mater., vol. 29, no. 20, pp. 1–39, 2019, doi: 10.1002/adfm.201808367.
[123] Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., and Chen, H. M., "Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives", Chem. Soc. Rev., vol. 46, no. 2, pp. 337–365, 2017, doi: 10.1039/c6cs00328a.
[124] Mohammed-Ibrahim, J., "A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction", J. Power Sources, vol. 448, no. September, p. 227375, 2020, doi: 10.1016/j.jpowsour.2019.227375.
[125] Corrigan, D. A. and Maheswari, S. P., "Catalysis of the Oxygen Evolution Reaction By Trace Iron Impurities in Thin Film Nickel Oxide Electrodes", Electrochem. Soc. Ext. Abstr., vol. 85–1, pp. 934–935, 1985.
[126] Govind Rajan, A., Martirez, J. M. P., and Carter, E. A., "Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials", J. American Chem. Soc., vol. 142, no. 7, pp. 3600–3612, 2020, doi: 10.1021/jacs.9b13708.
[127] Sakamaki, A., Yoshida-Hirahara, M., Ogihara, H., and Kurokawa, H., "One-Step Synthesis of Highly Active NiFe Electrocatalysts for the Oxygen Evolution Reaction", Langmuir, pp. 1–6, 2022, doi: 10.1021/acs.langmuir.2c00097.
[128] Dionigi, F. and Strasser, P., "NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes", Adv. Energy Materials., vol. 6, no. 23, 2016, doi: 10.1002/aenm.201600621.
[129] Chen, M., Lu, S., Fu, X. Z., and Luo, J. L., "Core–Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction", Adv. Science, vol. 7, no. 10, 2020, doi: 10.1002/advs.201903777.
[130] Yan, C., Huang, J., Wu, C., Li, Y., Tan, Y., Zhang, L., Sun, Y., Huang, X., & Xiong, J., "In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution", J. Mater. Sci. Technol., vol. 42, pp. 10–16, 2020, doi: 10.1016/j.jmst.2019.08.042.
[131] Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L., and Bell, A. T., "Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity", J. Phys. Chem. C, vol. 119, no. 13, pp. 7243–7254, 2015, doi: 10.1021/acs.jpcc.5b00105.
[132] Boumeriame, H., Da Silva, E. S., Cherevan, A. S., Chafik, T., Faria, J. L., and Eder, D., "Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting", J. Energy Chem., vol. 64, no. January, pp. 406–431, 2021, doi: 10.1016/j.jechem.2021.04.050.
[133] Zhang, Y., Xu, H., and Lu, S., "Preparation and application of layered double hydroxide nanosheets", RSC Adv., vol. 11, no. 39, pp. 24254–24281, 2021, doi: 10.1039/d1ra03289e.
[134] Zhang, X., Qiu, Y., Li, Q., Liu, F., Ji, X., and Liu, J., "Facile construction of well-defined hierarchical NiFe2O4/NiFe layered double hydroxides with a built-in electric field for accelerating water splitting at the high current density", Int. J. Hydrogen Energy, vol. 47, no. 97, pp. 40826–40834, 2022, doi: 10.1016/j.ijhydene.2022.09.171.
[135] Chen, Q., Wang, R., Lu, F., Kuang, X., Tong, Y., and Lu, X., "Boosting the Oxygen Evolution Reaction Activity of NiFe2O4 Nanosheets by Phosphate Ion Functionalization", ACS Omega, vol. 4, no. 2, pp. 3493–3499, 2019, doi: 10.1021/acsomega.8b03081.
[136] Gong, M., Wang, D. Y., Chen, C. C., Hwang, B. J., and Dai, H., "A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction", Nano Res., vol. 9, no. 1, pp. 28–46, 2016, doi: 10.1007/s12274-015-0965-x.
[137] Browne, M. P., Vasconcelos, J. M., Coelho, J., O′Brien, M., Rovetta, A. A., McCarthy, E. K., Nolan, H., Duesberg, G. S., Nicolosi, V., Colavita, P. E., & Lyons, M. E. G., "Sustainable Energy & Fuels Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides", pp. 207–216, 2017, doi: 10.1039/c6se00032k.
[138] Feng, Y., Zhang, H., Fang, L., Mu, Y., and Wang, Y., "Uniquely Mono-dispersing NiFe Alloyed Nanoparticles in Three-dimensional Strongly Linked Sandwiched Graphitized Carbon Sheets for High-efficiency Oxygen Evolution Reaction", 2016, doi: 10.1021/acscatal.6b00481.
[139] Fu, G., Cui, Z., Chen, Y., Xu, L., Tang, Y., and Goodenough, J. B., "Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery", Nano Energy, vol. 39, no. June, pp. 77–85, 2017, doi: 10.1016/j.nanoen.2017.06.029.
[140] Wang, H. F., Chen, L., Pang, H., Kaskel, S., and Xu, Q., "MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions", Chem. Soc. Rev., vol. 49, no. 5, pp. 1414–1448, 2020, doi: 10.1039/c9cs00906j.
[141] Zaman, N., Noor, T., and Iqbal, N., "Recent advances in the metal-organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review", RSC Adv., vol. 11, no. 36, pp. 21904–21925, 2021, doi: 10.1039/d1ra02240g.
[142] Wang, J., Gao, Y., Kong, H., Kim, J., Choi, S., Ciucci, F., Hao, D. Y., Yang, S., Shao, Z., & Lim, J., "Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances", Chem. Soc. Rev., vol. 49, no. 24, pp. 9154–9196, 2020, doi: 10.1039/d0cs00575d.
[143] Connor, P., Schuch, J., Kaiser, B., and Jaegermann, W., "The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst", Zeitschrift fur Phys. Chemie, vol. 234, no. 5, pp. 979–994, 2020, doi: 10.1515/zpch-2019-1514.
[144] Cossar, E., Houache, M. S. E., Zhang, Z., and Baranova, E. A., "Comparison of electrochemical active surface area methods for various nickel nanostructures", J. Electroanal. Chem., vol. 870, p. 114246, 2020, doi: 10.1016/j.jelechem.2020.114246.
[145] Zheng, Y., Jiao, Y., Li, L. H., Xing, T., Chen, Y., Jaroniec, M., & Qiao, S. Z., "Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution", ACS Nano, vol. 8, no. 5, pp. 5290–5296, 2014, doi: 10.1021/nn501434a.
[146] Anantharaj, S., Karthik, P. E., Subramanian, B., and Kundu, S., "Pt Nanoparticle Anchored Molecular Self-Assemblies of DNA: An Extremely Stable and Efficient HER Electrocatalyst with Ultralow Pt Content", ACS Catal., vol. 6, no. 7, pp. 4660–4672, 2016, doi: 10.1021/acscatal.6b00965.
[147] Abbood, M. A., Althomali, R. H., Al‑dolaimy, F., Madueño Portilla, R., Abdullaev, S. S., Delgado Laime, M. D. C., Hassan, Z. F., Abbas, A. H. R., & Alsaalamy, A. H., "In situ alloying silver/copper nanostructure as efficient electrocatalysts toward electrochemical water splitting", Ionics (Kiel)., vol. 30, no. 1, pp. 433–444, 2024, doi: 10.1007/s11581-023-05264-9.
[148] Chen, F., Tang, M., Zhou, J., Zhang, H., Su, C., and Guo, S., "Fe-based amorphous alloy wire as highly efficient and stable electrocatalyst for oxygen evolution reaction of water splitting", J. Alloys Compound., vol. 955, p. 170253, 2023, doi: 10.1016/j.jallcom.2023.170253.
[149] Zhang, L., Cao, X., Guo, C., Hassan, A., Zhang, Y., and Wang, J., "Interface and morphology engineering of Ru-FeCoP hollow nanocages as alkaline electrocatalyst for overall water splitting", J. Environ. Chem. Eng., vol. 11, no. 6, p. 111373, 2023, doi: 10.1016/j.jece.2023.111373.
[150] Lan, K., Li, J., Zhu, Y., Gong, L., Li, F., Jiang, P., Niu, F., & Li, R., "Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting", J. Colloid Interface Sci., vol. 539, pp. 646–653, 2019, doi: 10.1016/j.jcis.2018.12.044.
[151] Cogal, S., Celik Cogal, G., Mičušík, M., Kotlar, M., & Omastov, M., "Cobalt-doped WSe2@conducting polymer nanostructures as bifunctional electrocatalysts for overall water splitting", Int. J. Hydrogen Energy, vol. 49, no. xxxx, pp. 689–700, 2024, doi: 10.1016/j.ijhydene.2023.09.002.
[152] Yang, X., Wang, Y., Yang, X., Fu, S., Sui, G., Chai, D.-F., Li, J., & Guo, D., "Lattice strain assisted with interface engineering for designing efficient CoSe2-CoO core-shell microspheres as promising electrocatalysts towards overall water splitting", Colloids Surfaces A Physicochem. Eng. Asp., vol. 663, no. November 2022, p. 131039, 2023, doi: 10.1016/j.colsurfa.2023.131039.
[153] Dai, R., Zhang, H., Zhou, W., Zhou, Y., Ni, Z., Chen, J., Zhao, S., Zhao, Y., Yu, F., Chen, A., Wang, R., & Sun, T., "Interface engineering of bimetallic nitrides nanowires as a highly efficient bifunctional electrocatalyst for water splitting", J. Alloys Compound., vol. 919, p. 165862, 2022, doi: 10.1016/j.jallcom.2022.165862.
[154] Xu, X., Shao, Z., and Jiang, S. P., "High-Entropy Materials for Water Electrolysis", Energy Technol., vol. 10, no. 11, 2022, doi: 10.1002/ente.202200573.
[155] Wu, T., Dong, C., Sun, D., and Huang, F., "Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts", Nanoscale, vol. 13, no. 3, pp. 1581–1595, 2021, doi: 10.1039/d0nr08009h.
[156] Shi, B., Han, X., He, X., and Cui, L., "Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst", Int. J. Hydrogen Energy, vol. 44, no. 42, pp. 23689–23698, 2019, doi: 10.1016/j.ijhydene.2019.07.082.
[157] Wang, B., Liu, W., Leng, Y., Yu, X., Wang, C., Hu, L., Zhu, X., Wu, C., Yao, Y., & Zou, Z., "Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting", iScience, vol. 26, no. 4, p. 106326, 2023, doi: 10.1016/j.isci.2023.106326.
[158] McCrory, C. C. L., Jung, S., Peters, J. C., and Jaramillo, T. F., "Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction", J. American Chem. Soc., vol. 135, no. 45, pp. 16977–16987, 2013, doi: 10.1021/ja407115p.
[159] Islam, M. S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., and Bin Mukhlish, M. Z., "Hydrothermal Novel Synthesis of Neck-structured Hyperthermia-suitable Magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) Nanoparticles", J. Sci. Res., vol. 4, no. 1, p. 99, 2011, doi: 10.3329/jsr.v4i1.8727.
[160] Agusu, L., Alimin, La O., Ahmad, M. Z., Firihu, M. Z., Mitsudo, S., & Kikuchi, H., "Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials", J. Phys. Conf. Ser., vol. 1153, no. 1, pp. 2–9, 2019, doi: 10.1088/1742-6596/1153/1/012056.
[161] Ahmed, K. A. M., Zeng, Q., Wu, K., and Huang, K., "Mn3O4 nanoplates and nanoparticles: Synthesis, characterization, electrochemical and catalytic properties", J. Solid State Chem., vol. 183, no. 3, pp. 744–751, 2010, doi: 10.1016/j.jssc.2010.01.015.
[162] Cai, L., Qiu, B., Lin, Z., Wang, Y., Ma, S., Wang, M., Tsang, Y. H., & Chai, Y., "Active site engineering of Fe- and Ni-sites for highly efficient electrochemical overall water splitting", J. Mater. Chem. A, vol. 6, no. 43, pp. 21445–21451, 2018, doi: 10.1039/C8TA08217K.
[163] Pazhamalai, P., Krishnamoorthy, K., Sahoo, S., Mariappan, V. K., and Kim, S. J., "Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor", Chem. Eng. J., vol. 359, no. November 2018, pp. 409–418, 2019, doi: 10.1016/j.cej.2018.11.153.
[164] Mei, B. A., Munteshari, O., Lau, J., Dunn, B., and Pilon, L., "Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices", J. Phys. Chem. C, vol. 122, no. 1, pp. 194–206, 2018, doi: 10.1021/acs.jpcc.7b10582.
[165] Kumar, M. P., Sasikumar, M., Arulraj, A., Rajasudha, V., Murugadoss, G., Rajesh Kumar, M., Peera, S. G., & Mangalaraja, R. V., "NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction", Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111470.
指導教授 鄭憲清 李勝偉(Dr. Jason Shian-Ching Jang Dr. Sheng-Wei Lee) 審核日期 2024-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明