參考文獻 |
Bibliography
[1] Eric M. Rohren, Timothy G. Turkington, and R. Edward Coleman. “Clinical
Applications of PET in Oncology”. In: Radiology 231.2 (2004), pp. 305–
332.
[2] Carl K Hoh et al. “Cancer Detection with Whole-Body PET Using 2-
[18F]Fluoro-2-Deoxy-D-Glucose”. In: Journal of Computer Assisted Tomography
17.4 (July 1993), pp. 582–589.
[3] P S Conti. The applications of PET in clinical oncology. 1991.
[4] Michael A Nader et al. “PET imaging of dopamine D2 receptors during
chronic cocaine self-administration in monkeys”. In: Nature neuroscience
9.8 (2006), p. 1050.
[5] Jinyi Qi et al. “High-resolution 3D Bayesian image reconstruction using
the microPET small-animal scanner”. In: Physics in Medicine & Biology
43.4 (1998), p. 1001.
[6] Alberto Motta et al. “Fast 3D-EM reconstruction using Planograms for
stationary planar positron emission mammography camera”. In: Computers
in Medical Imaging and Graphics 29.5 (2005), pp. 587–596.
[7] S. Surti and J. S. Karp. “Advances in time-of-flight PET”. In: Physics in
Medicine and Biology 52.5 (2007), R1.
[8] J. Zhang et al. “Advanced DOI Correction Methods in PET Imaging”. In:
Journal of Clinical Imaging Science 10.3 (2007), pp. 45–52.
[9] Chih-Ming Kao et al. “A high-sensitivity small-animal PET scanner: Development
and initial performance measurements”. In: IEEE Transactions
on Nuclear Science 56.5 (2009), pp. 2678–2688.
[10] Lawrence R MacDonald et al. “Clinical imaging characteristics of
the positron emission mammography/tomography breast imaging and
biopsy system (PEM/PET): Design, construction, and phantom-based
measurements”. In: Journal of Nuclear Medicine 50.10 (2009), pp. 1666–
1675.
[11] Hao Peng and Craig S Levin. “Design study of a high-resolution breastdedicated
PET system built from cadmium zinc telluride detectors”. In:
Physics in Medicine and Biology 55.11 (2010), p. 2761.
173
[12] Hui Zhang et al. “Performance characteristics of BGO detectors for a low
cost preclinical PET scanner”. In: IEEE Transactions on Nuclear Science 57.3
(2010), pp. 1038–1044.
[13] WilliamWMoses and Jinyi Qi. “Fundamental limits of positron emission
mammography”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
497.1 (2003), pp. 82–89.
[14] Pablo Crespo, Georgy Shakirin, and Wolfgang Enghardt. “On the detector
arrangement for in-beam PET for hadron therapy monitoring”. In:
Physics in Medicine and Biology 51.11 (2006), p. 2143.
[15] Raymond R Raylman et al. “The positron emission mammography/tomography
breast imaging and biopsy system (PEM/PET): design, construction
and phantom-based measurements”. In: Physics in Medicine and
Biology 53.3 (2008), p. 637.
[16] Charles J Thompson et al. “Feasibility study for positron emission mammography”.
In: Medical Physics 21.4 (1994), pp. 529–538.
[17] Wen Luo, Evgeniy Anashkin, and Charles G Matthews. “Performance
evaluation of a PEM scanner using the NEMA NU 4 — 2008 small animal
PET standards”. In: IEEE Transactions on Nuclear Science 57.1 (2010),
pp. 94–100.
[18] Martin F Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In:
Physics in Medicine and Biology 49.11 (2004), p. 2437.
[19] Hui Zhang et al. “Performance evaluation of PETbox: a low cost bench
top preclinical PET scanner”. In: Molecular Imaging and Biology 13.5 (2011),
pp. 949–961.
[20] Alberto Guerra et al. “Performance evaluation of the fully engineered
YAP-(S)PET scanner for small animal imaging”. In: IEEE Transactions on
Nuclear Science 53.3 (2006), pp. 1078–1084.
[21] Peter Bruyndonckx et al. “Initial characterization of a nonpixelated scintillator
detector in a PET prototype demonstrator”. In: IEEE Transactions
on Nuclear Science 53.3 (2006), pp. 2543–2548.
[22] Peter Bruyndonckx et al. “Initial Characterization of a Nonpixelated Scintillator
Detector in a PET Prototype Demonstrator”. In: IEEE Transactions
on Nuclear Science 53.3 (2006), pp. 2543–2548.
[23] Hector Alva-Sanchez et al. “A Small-Animal PET System Based on LYSO
Crystal Arrays, PS-PMTs and a PCI DAQ Board”. In: IEEE Transactions on
Nuclear Science 57.3 (2010), pp. 85–91.
174
[24] Chih-Ming Kao et al. “Image reconstruction of a dual-head small-animal
PET system by using Monte-Carlo computed system response matrix”.
In: 9th International Meeting on Fully Three-Dimensional Image Reconstruction
in Radiology and Nuclear Medicine (2007), p. 398.
[25] Qiang Bao et al. “Image Reconstruction for PETbox, a Benchtop Preclinical
PET Tomograph”. In: IEEE Nuclear Science Symposium Conference
Record 2009 (2009), pp. 2733–2737.
[26] Ying Liu et al. “System response matrix calculation using symmetries for
dual-head PET scanners”. In: International Journal of Imaging Systems and
Technology 23.3 (2013), pp. 205–210.
[27] Chih-Ming Kao et al. “A High-Sensitivity Small-Animal PET Scanner:
Development and Initial Performance Measurements”. In: IEEE Transactions
on Nuclear Science 56.5 (2009), pp. 2678–2688.
[28] Chenxi Zhang et al. “Performance evaluation of a 90 degrees-rotating
dual-head small animal PET system”. In: Physics in Medicine and Biology
60.20 (2015), pp. 5873–5886.
[29] Stefan Siegel et al. “Initial results from a PET planar small animal imaging
system”. In: IEEE Transactions on Nuclear Science 46.3 (1999), pp. 571–
577.
[30] Sascha Moehrs et al. “Multi-ray-based system matrix generation for 3D
PET reconstruction”. In: Physics in Medicine and Biology 53.24 (2008),
pp. 6925–6947.
[31] Chih-Ming Kao, Yang Dong, and Qingguo Xie. “Evaluation of 3D image
reconstruction methods for a dual-head small-animal PET scanner”. In:
IEEE Nuclear Science Symposium Conference Record 2007 (2007), p. 072007.
[32] Feng Meng et al. “Influence of Rotation Increments on Imaging Performance
for a Rotatory Dual-Head PET System”. In: BioMed Research International
2017 (2017), p. 8615086.
[33] William H. Sweet. “The uses of nuclear disintegration in the diagnosis
and treatment of brain tumor”. In: N. Engl. J. Med. 245.23 (1951), pp. 875–
878. DOI: 10.1056/NEJM195112062452301.
[34] F. R. J.Wrenn, M. L. Good, and P. Handler. “The use of positron-emitting
radioisotopes for the localization of brain tumors”. In: Science 113.2940
(1951), pp. 525–527. DOI: 10.1126/science.113.2940.525.
[35] Michael E. Phelps et al. “Application of annihilation coincidence detection
to transaxial reconstruction tomography”. In: J. Nucl. Med. 16.3
(1973), pp. 210–224.
175
[36] Michael E. Phelps et al. “Design Considerations for a Positron Emission
Transaxial Tomograph (PETT III)”. In: IEEE Trans. Nucl. Sci. 23.1 (1976),
pp. 516–522. DOI: 10.1109/TNS.1976.4328298.
[37] Michel M. Ter-Pogossian et al. “A positron-emission transaxial tomograph
for nuclear imaging (PETT)”. In: Radiology 114.1 (1975), pp. 89–98.
DOI: 10.1148/114.1.89.
[38] C. Bohm et al. “A Computer Assisted Ringdetector Positron Camera System
for Reconstruction Tomography of the Brain”. In: IEEE Trans. Nucl.
Sci. 25.1 (1978), pp. 624–637. DOI: 10.1109/TNS.1978.4329384.
[39] Donald L. Snyder and David G. Politte. “Image Reconstruction from List-
Mode Data in an Emission Tomography System Having Time-of-Flight
Measurements”. In: IEEE Trans. Nucl. Sci. 30.3 (1983), pp. 1843–1849. DOI:
10.1109/TNS.1983.4332660.
[40] Michel M. Ter-Pogossian et al. “The super PET 3000-E: a PET scanner
designed for high count rate cardiac applications”. In: J. Comput. Assist.
Tomogr. 18.4 (1994), pp. 661–669.
[41] M. E. Casey and R. Nutt. “A Multicrystal Two Dimensional BGO Detector
System for Positron Emission Tomography”. In: IEEE Trans. Nucl. Sci. 33.1
(1986), pp. 460–463. DOI: 10.1109/TNS.1986.4337143.
[42] C. L. Melcher and J. S. Schweitzer. “Cerium-doped lutetium oxyorthosilicate:
a fast, efficient new scintillator”. In: IEEE Trans. Nucl. Sci. 39.4 (1992),
pp. 502–505. DOI: 10.1109/23.159655.
[43] S. R. Cherry et al. “MicroPET: a high resolution PET scanner for imaging
small animals”. In: IEEE Trans. Nucl. Sci. 44.3 (1997), pp. 1161–1166. DOI:
10.1109/23.596981.
[44] D. Visvikis, C. Cheze-Le Rest, and P. Jarritt. “PET technology: current
trends and future developments”. In: Journal of Nuclear Medicine and
Molecular Imaging 31 (2004), pp. 208–221.
[45] W. Luo, E. Anashkin, and C. Matthews. “Performance evaluation of a
PEM scanner using the NEMA NU 4 — 2008 small animal PET standards”.
In: IEEE Transactions on Nuclear Science 57.1 (2010), p. 94.
[46] P. Crespo, G. Shakirin, and W. Enghardt. “On the detector arrangement
for in-beam PET for hadron therapy monitoring”. In: Physics in Medicine
and Biology 51 (2006), p. 2143.
[47] J. S. Karp. “Against: Is LSO the future of PET?” In: European Journal of
Nuclear Medicine 29 (2002), pp. 1525–1528.
176
[48] M. F. Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In: Physics in
Medicine and Biology 49 (2004), p. 2437.
[49] H. Zhang et al. “Performance evaluation of PETbox: a low cost bench
top preclinical PET scanner”. In: Molecular Imaging and Biology 13 (2011),
p. 949.
[50] A. Guerra et al. “Performance evaluation of the fully engineered YAP-
(S)PET scanner for small animal imaging”. In: IEEE Transactions on Nuclear
Science 53 (2006), p. 1078.
[51] R. R. Raylman et al. “The positron emission mammography/tomography
breast imaging and biopsy system (PEM/PET): design, construction
and phantom-based measurements”. In: Physics in Medicine and Biology
53 (2008), p. 637.
[52] C. J. Thompson et al. “Feasibility study for positron emission mammography”.
In: Medical Physics 21 (1994), p. 529.
[53] Sascha Moehrs et al. “A small animal PET scanner based on LYSO crystal
arrays, PS-PMTs and a PCI DAQ board”. In: IEEE Transactions on Nuclear
Science 55.6 (2008), pp. 3134–3140.
[54] M. F. Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In: Physics in
Medicine and Biology 49 (2004), p. 2437.
[55] C. M. Kao et al. “A Monte Carlo approach to eliminate DOI blurring in
PET”. In: Journal of Instrumentation 12.9011 (2017).
[56] T. Beyer, D. W. Townsend, and T. M. Blodgett. “Dual modality PET/CT
tomography for clinical oncology”. In: Quarterly Journal of Nuclear
Medicine 46 (2002), pp. 24–34.
[57] Y. Shao et al. “Simultaneous PET and MR imaging”. In: Physics in
Medicine and Biology 42 (1997), pp. 1965–1970.
[58] Y.C. Tai et al. “Performance Evaluation of the MicroPET P4: A PET System
Dedicated to Animal Imaging”. In: Physics in Medicine & Biology 46.7
(2001), p. 1845.
[59] Christof Knoess et al. “Performance evaluation of the microPET R4 PET
scanner for rodents”. In: European journal of nuclear medicine and molecular
imaging 30.5 (2003), pp. 737–747.
[60] Marc C Huisman et al. “Performance evaluation of the Philips MOSAIC
small animal PET scanner”. In: European journal of Nuclear Medicine and
Molecular imaging 34.4 (2007), pp. 532–540.
177
[61] Klaus P. Schäfers et al. “Performance Evaluation of the 32-Module
quadHI-DAC Small-Animal PET Scanner”. In: Journal of Nuclear Medicine
46.6 (2005), pp. 996–1004.
[62] Richard Laforest et al. “Performance evaluation of the microPET R
—FOCUS-F120”. In: IEEE Transactions on Nuclear Science 54.1 (2007),
pp. 42–49.
[63] Andrew L Goertzen et al. “NEMA NU 4-2008 comparison of preclinical
PET imaging systems”. In: Journal of Nuclear Medicine 53.8 (2012),
pp. 1300–1309.
[64] Karl Ziemons et al. “The ClearPETTM Project: Development of a 2nd
Generation High-Performance Small Animal PET Scanner”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 537.1-2 (2005), pp. 307–311.
[65] Yuchuan Wang et al. “Performance Evaluation of the GE Healthcare eXplore
VISTA Dual-Ring Small-Animal PET Scanner”. In: Journal of Nuclear
Medicine 47.11 (2006), pp. 1891–1900.
[66] E Lage et al. “Design and performance evaluation of a coplanar multimodality
scanner for rodent imaging”. In: Physics in Medicine & Biology
54.18 (2009), p. 5427.
[67] Melanie Bergeron et al. “Imaging performance of LabPET APD-based
digital PET scanners for pre-clinical research”. In: Physics in Medicine &
Biology 59.3 (2014), p. 661.
[68] Melanie Bergeron et al. “Performance evaluation of the LabPET APDbased
digital PET scanner”. In: IEEE Transactions on Nuclear Science 56.1
(2009), pp. 10–16.
[69] K. Sato et al. “Performance Evaluation of the Small-Animal PET Scanner
ClairvivoPET Using NEMA NU 4-2008 Standards”. In: Physics in
Medicine & Biology 61.2 (2015), p. 696.
[70] Rameshwar Prasad, Osman Ratib, and Habib Zaidi. “Performance evaluation
of the FLEX triumph X-PET scanner using the national electrical
manufacturers association NU-4 standards”. In: Journal of Nuclear
Medicine 51.10 (2010), pp. 1608–1615.
[71] Kálmán Nagy et al. “Performance evaluation of the small-animal
nanoScan PET/MRI system”. In: Journal of Nuclear Medicine 54.10 (2013),
pp. 1825–1832.
[72] T.J. Spinks et al. “Quantitative PET and SPECT Performance Characteristics
of the Albira Trimodal Pre-clinical Tomograph”. In: Physics in
Medicine & Biology 59.3 (2014), p. 715.
178
[73] Luyao Wang et al. “Performance Evaluation of the Trans-PET R BioCaliburn
R LH System: A Large FOV Small-Animal PET System”. In: Physics
in Medicine & Biology 60.1 (2014), p. 137.
[74] Wai-Hoi Wong et al. “Engineering and Performance (NEMA and Animal)
of a Lower-Cost Higher-Resolution Animal PET/CT Scanner Using
Photomultiplier-Quadrant-Sharing Detectors”. In: Journal of Nuclear
Medicine 53.11 (2012), pp. 1786–1793.
[75] Istvan Szanda et al. “National Electrical Manufacturers Association NU-
4 Performance Evaluation of the PET Component of the NanoPET/CT
Preclinical PET/CT Scanner”. In: Journal of Nuclear Medicine 52.11 (2011),
pp. 1741–1747.
[76] Cristian C Constantinescu and Jogeshwar Mukherjee. “Performance
evaluation of an Inveon PET preclinical scanner”. In: Physics in Medicine
& Biology 54.9 (2009), p. 2885.
[77] Nicola Belcari et al. “NEMA NU-4 performance evaluation of the IRIS
PET/CT preclinical scanner”. In: IEEE Transactions on Radiation and
Plasma Medical Sciences 1.4 (2017), pp. 301–309.
[78] Matthew G Vander Heiden, Lewis C Cantley, and Craig B Thompson.
“Understanding the Warburg effect: the metabolic requirements of cell
proliferation”. In: science 324.5930 (2009), pp. 1029–1033.
[79] Khalid O Alfarouk et al. “Glycolysis, tumor metabolism, cancer growth
and dissemination. A new pH-based etiopathogenic perspective and
therapeutic approach to an old cancer question”. In: Oncoscience 1.12
(2014), p. 777.
[80] Angela M Otto. “Warburg effect (s)—a biographical sketch of Otto Warburg
and his impacts on tumor metabolism”. In: Cancer & metabolism 4.1
(2016), pp. 1–8.
[81] The Nobel Prize in Physiology or Medicine 1931. NobelPrize.org. Accessed:
2nd February 2024. URL: https://www.nobelprize.org/prizes/
medicine/1931/summary/.
[82] Didier Le Bars. “Fluorine-18 and medical imaging: Radiopharmaceuticals
for positron emission tomography”. In: Journal of Fluorine Chemistry
127.11 (2006), pp. 1488–1493.
[83] Orit Jacobson, Dale O Kiesewetter, and Xiaoyuan Chen. “Fluorine-18 radiochemistry,
labeling strategies and synthetic routes”. In: Bioconjugate
chemistry 26.1 (2014), pp. 1–18.
179
[84] Wim JG Oyen et al. “Role of FDG-PET in the diagnosis and management
of lung cancer”. In: Expert Review of Anticancer Therapy 4.4 (Aug. 2004),
pp. 561–567.
[85] R.A. Schmid et al. “Staging of Recurrent and Advanced Lung Cancer
with 18F-FDG PET in a Coincidence Technique (Hybrid PET)”. In: Nuclear
Medicine Communications 24.1 (2003), pp. 37–45.
[86] Rodney J Hicks et al. “The utility of 18F-FDG PET for suspected recurrent
non–small cell lung cancer after potentially curative therapy: impact on
management and prognostic stratification”. In: Journal of Nuclear Medicine
42.11 (2001), pp. 1605–1613.
[87] Rodney J Hicks. “Role of 18F-FDG PET in assessment of response in
non–small cell lung cancer”. In: Journal of Nuclear Medicine (2009).
[88] F Castell and GJR Cook. “Quantitative techniques in 18 FDG PET scanning
in oncology”. In: British Journal of Cancer 98.10 (2008), p. 1597.
[89] James H.F. Rudd et al. “Imaging Atherosclerotic Plaque Inflammation by
Fluorodeoxyglucose with Positron Emission Tomography”. In: Journal of
the American College of Cardiology 55.23 (June 2010), pp. 2527–2535.
[90] RR Trinder et al. “Theragnostics-Alternative production of terbium isotopes
at the University of Birmingham using an MC40 cyclotron”. In:
Journal of Physics: Conference Series. Vol. 1643. 1. IOP Publishing. 2020,
p. 012209.
[91] Michael E Phelps, ed. PET. Springer New York, 2006.
[92] Patries M Herst and Michael V Berridge. “Cell hierarchy, metabolic flexibility
and systems approaches to cancer treatment”. In: Current pharmaceutical
biotechnology 14.3 (2013), pp. 289–299.
[93] Jim Rees. PET Scan of a Healthy Brain Compared to a Brain at an Early Stage
of Alzheimer’s Disease. http://www.douglas.qc.ca/. Image courtesy
of Douglas Mental Health University Institute, available on https:
//www.flickr.com/people/institut-douglas/. Accessed on
February 2, 2024. 2024.
[94] Simon R. Cherry and Sanjiv Sam Gambhir. “Use of positron emission
tomography in animal research.” In: ILAR journal 423 (2001), pp. 219–32.
URL: https://api.semanticscholar.org/CorpusID:15585648.
[95] William W Moses. “Fundamental limits of spatial resolution in PET”. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 648 (2011), pp. 236–240.
180
[96] Craig S Levin and Edward J Hoffman. “Calculation of positron range
and its effect on the fundamental limit of positron emission tomography
system spatial resolution”. In: Physics in Medicine & Biology 44.3 (1999),
p. 781.
[97] C Le Loirec and C Champion. “Track structure simulation for positron
emitters of physical interest. Part II: The case of the radiometals”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 582.2 (2007), pp. 654–664.
[98] Lars Jødal, Cindy Le Loirec, and Christophe Champion. “Positron range
in PET imaging: Non-conventional isotopes”. In: Physics in medicine and
biology 59 (Nov. 2014), pp. 7419–7434.
[99] Simon R. Cherry, James A. Sorenson, and Michael E. Phelps. “Physics in
Nuclear Medicine”. In: (2012).
[100] Glenn F. Knoll. Radiation Detection and Measurement. John Wiley & Sons,
2010.
[101] J. M. Ollinger. “Model based scatter correction for fully 3D PET”. In:
Physics in Medicine and Biology 41 (1996), pp. 153–176.
[102] Thomas K. Lewellen. “Recent developments in PET detector technology”.
In: Physics in Medicine and Biology 53.17 (2008), pp. 287–300.
[103] Habib Zaidi and Christopher M. Thompson. “Quantitative analysis in
nuclear medicine imaging”. In: Journal of Nuclear Medicine 48.1 (2007),
pp. 61–67.
[104] D. W. Townsend. “Physical Principles and Technology of Clinical PET
Imaging”. In: Annals of the Academy of Medicine, Singapore 33 (2004),
pp. 133–145.
[105] D. L. Bailey et al. “Positron emission tomography: basic sciences”. In:
Springer Science & Business Media (2005).
[106] Miles N. Wernick and John N. Aarsvold. Emission Tomography: The Fundamentals
of PET and SPECT. Academic Press, 2004.
[107] Frank Herbert Attix. Introduction to Radiological Physics and Radiation
Dosimetry. John Wiley & Sons, 1986.
[108] J. H. Hubbell. “Review of photon interaction cross section data in the
medical and biological context”. In: Physics in Medicine and Biology 51.13
(2006), R245.
[109] Harold Elford Johns and John Robert Cunningham. The Physics of Radiology.
Charles C Thomas Publisher, 1983.
[110] Maziar Montazerian et al. “Radiopaque Crystalline, Non-Crystalline and
Nanostructured Bioceramics”. In: Materials 15.21 (2022), p. 7477.
181
[111] John L. Humm, Anatoly Rosenfeld, and Alberto Del Guerra. “From PET
detectors to PET scanners”. In: European Journal of Nuclear Medicine and
Molecular Imaging 30.11 (2003), pp. 1574–1597.
[112] William R. Leo. Techniques for Nuclear and Particle Physics Experiments: A
How-to Approach. Springer-Verlag, 1994.
[113] John B. Birks. The Theory and Practice of Scintillation Counting. Pergamon
Press, 1964.
[114] Charles L. Melcher. “Scintillation crystals for PET”. In: Journal of Nuclear
Medicine 41.6 (2000), pp. 1051–1055.
[115] Michael Schmand et al. “Brain PET using LSO detectors”. In: Journal of
Nuclear Medicine 39.5 (1998), 63P.
[116] Saint-Gobain Ceramics & Plastics Inc. “Saint-Gobain, LYSO Data Sheet”.
In: (2004-2020), pp. 11–20. URL: https://www.luxiumsolutions.
com/sites/default/files/2021-09/Array-Brochure.pdf.
[117] Tom K Lewellen. “Recent developments in PET detector technology”. In:
Physics in Medicine & Biology 53.17 (2008), R287.
[118] Carel WE Van Eijk. “Inorganic scintillators in medical imaging”. In:
Physics in medicine & biology 47.8 (2002), R85.
[119] Dieter Renker. “Geiger-mode avalanche photodiodes, history, properties
and problems”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
567.1 (2009), pp. 48–56.
[120] Dennis R. Schaart et al. “LaBr3:Ce and SiPMs for time-of-flight PET:
achieving 100 ps coincidence resolving time”. In: Physics in Medicine and
Biology 55.7 (2010), N179.
[121] Ron Ziegler. “The future of digital imaging”. In: Healthcare Imaging
(2010), pp. 22–25.
[122] Hamamatsu Photonics. Photomultiplier Tubes: Basics and Applications.
Tech. rep. Third Edition. Hamamatsu Photonics K.K., 2007.
[123] M.E. Casey and R. Nutt. “A new high resolution detector for positron
emission tomography”. In: European Journal of Nuclear Medicine 12 (1986),
S5–S7.
[124] ND Volkow, NA Mullani, and B Bendriem. “Positron emission tomography
instrumentation: an overview.” In: American journal of physiologic
imaging 3.3 (1988), pp. 142–153.
[125] J.P. Pansart. “Avalanche Photodiodes”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 392.1-3 (1997), pp. 349–356.
182
[126] Samuel España et al. “Avalanche Photodiodes for PET Imaging: A Review”.
In: IEEE Transactions on Nuclear Science 57.3 (2010), pp. 1230–1241.
[127] N. Dinu, M. Schmand, and S. Tavernier. “Geiger-mode Avalanche Photodiodes
for PET”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
729 (2013), pp. 3–15.
[128] V. Golovin and Z. Sadygov. “New Silicon Photomultiplier”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 518.1-2 (2004), pp. 560–564.
[129] Z. Sadygov and V. Golovin. “Silicon Photomultipliers and their Bio-
Medical Applications”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
767 (2014), pp. 252–267.
[130] Paolo Castro et al. “Performance of the latest generation of silicon photomultipliers”.
In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 787
(2015), pp. 207–210.
[131] Instite of Physics, Academia Sinica, Taiwan. URL: https://www.sinica.
edu.tw/.
[132] Mythra Varun Nemallapudi et al. “Positron emitter depth distribution
in PMMA irradiated with 130 MeV protons measured using TOF-PET
detectors”. In: IEEE Transactions on Radiation and Plasma Medical Sciences
(2021), pp. 1–1. DOI: 10.1109/TRPMS.2021.3084953.
[133] P. Andreo. “Monte Carlo techniques in medical radiation physics”. In:
Phys. Med. Biol. 36.7 (1991), pp. 861–920.
[134] M. Ljungberg. Monte Carlo Calculations in Nuclear Medicine: Applications in
Diagnostic Imaging. Bristol: IOP Publishing, 1998.
[135] H. Zaidi. Quantitative Analysis in Nuclear Medicine Imaging. New York:
Springer, 2005.
[136] B. Bai et al. “Evaluation of MAP image reconstruction with positron
range modeling for 3D PET”. In: 2005 IEEE Nuclear Science Symposium
Conference Record. Vol. 1-5. 2005, pp. 2686–2689.
[137] Y.K. Dewaraja, M. Ljungberg, and K.F. Koral. “Characterization of scatter
and penetration using Monte Carlo simulation in 131I imaging”. In: J.
Nucl. Med. 41.1 (2000), pp. 123–130.
[138] U. Bottigli et al. “Monte-Carlo Simulation and Experimental Tests on
BGO, CSF and NaI(Tl) Crystals for Positron Emission Tomography”. In:
Journal of Nuclear Medicine and Allied Sciences 29.3 (1985), pp. 221–227.
183
[139] S.E. Derenzo. “Monte-Carlo Calculations of the Detection Efficiency of
Arrays of NaI(Tl), BGO, CSF, Ge, and Plastic Detectors for 511-KeV Photons”.
In: IEEE Transactions on Nuclear Science 28.1 (1981), pp. 131–136.
[140] M. Ljungberg and S.E. Strand. “Scatter and attenuation correction in
SPECT using density maps and Monte Carlo simulated scatter functions”.
In: J. Nucl. Med. 31.9 (1990), pp. 1560–1567.
[141] G. Poludniowski et al. “An efficient Monte Carlo-based algorithm for
scatter correction in keV cone-beam CT”. In: Phys. Med. Biol. 54.12 (2009),
pp. 3847–3864.
[142] OpenGATE Collaboration. http://www.opengatecollaboration.org. Accessed
2023.
[143] GATE User Guide, Version 4.0.0. 2008.
[144] S. Agostinelli et al. “GEANT4-a simulation toolkit”. In: Nuclear Instruments
& Methods in Physics Research Section A-Accelerators Spectrometers
Detectors and Associated Equipment 506.3 (2003), pp. 250–303.
[145] Sébastien Jan et al. “GATE: a simulation toolkit for PET and SPECT”. In:
Physics in Medicine & Biology 49.19 (2004), p. 4543.
[146] GATE User Guide, Version 4.0.0. 2008.
[147] Michel Defrise, Paul E Kinahan, and Christian J Michel. “Image reconstruction
algorithms in PET”. In: Positron emission tomography: basic sciences.
Springer, 2005, pp. 60–68.
[148] TH Farquhar et al. “An investigation of filter choice for filtered backprojection
reconstruction in PET”. In: IEEE transactions on nuclear science
45.3 (1998), pp. 1133–1137.
[149] Arthur P Dempster, Nan MLaird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the royal
statistical society: series B (methodological) 39.1 (1977), pp. 1–22.
[150] Lawrence A Shepp and Yehuda Vardi. “Maximum likelihood reconstruction
for emission tomography”. In: IEEE transactions on medical imaging
1.2 (1982), pp. 113–122.
[151] Yilong Liu et al. “System response matrix calculation using symmetries
for dual-head PET scanners”. In: International journal of imaging systems
and technology 23.3 (2013), pp. 205–214.
[152] M. Rafecas et al. “Effect of noise in the probability matrix used for statistical
reconstruction of PET data”. In: IEEE Transactions on Nuclear Science
51.4 (2004), pp. 149–156.
184
[153] J. Qi et al. “High-resolution 3D Bayesian image reconstruction using the
microPET small-animal scanner”. In: Physics in Medicine and Biology 43
(1998), pp. 1001–1013.
[154] C. Kao et al. “Image reconstruction of a dual-head small-animal PET system
by usingMCcomputed system response matrix”. In: 9th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine. 2007, pp. 398–401.
[155] Adam M Alessio, Paul E Kinahan, and Thomas K Lewellen. “Modeling
and incorporation of system response functions in 3-D whole body PET”.
In: IEEE Transactions on Medical Imaging 25.7 (2006), pp. 828–837.
[156] Robert L Siddon. “Fast calculation of the exact radiological path for a
three-dimensional CT array”. In: Medical physics 12.2 (1985), pp. 252–255.
[157] Huaxia Zhao and Andrew J Reader. “Fast ray-tracing technique to calculate
line integral paths in voxel arrays”. In: 2003 IEEE Nuclear Science Symposium.
Conference Record (IEEE Cat. No. 03CH37515). Vol. 4. IEEE. 2003,
pp. 2808–2812.
[158] Jeffrey A Fessler and Alfred O Hero. “Penalized maximum-likelihood
image reconstruction using space-alternating generalized EM algorithms”.
In: IEEE Transactions on Image Processing 4.10 (1994), pp. 1417–
1429. DOI: 10.1109/83.334981.
[159] Marcel Beister, Daniel Kolditz, and Willi A Kalender. “Iterative reconstruction
methods in X-ray CT”. In: Physica Medica 28.2 (2012), pp. 94–
108. DOI: 10.1016/j.ejmp.2012.01.003.
[160] L A Shepp and Y Vardi. “Maximum likelihood reconstruction for emission
tomography”. In: IEEE Transactions on Medical Imaging 1.2 (1982),
pp. 113–122. DOI: 10.1109/TMI.1982.4307558.
[161] Richard Leahy and Xiaolan Yan. “Incorporation of anatomical MR data
for improved functional imaging with PET”. In: Information Processing in
Medical Imaging. Springer. 1991, pp. 105–120. DOI: 10.1007/978-1-
4615-3724-3_8.
[162] K J La Croix et al. “Investigation of the use of X-ray CT images for attenuation
correction in SPECT”. In: IEEE Transactions on Nuclear Science 41.6
(1994), pp. 2793–2799. DOI: 10.1109/23.340642.
[163] Michael A King, Benjamin M Tsui, and Tinsu S Pan. “Attenuation compensation
for cardiac single-photon emission computed tomographic
imaging”. In: Journal of Nuclear Cardiology 2.1 (1995), pp. 18–29. DOI: 10.
1007/BF03041821.
185
[164] H M Hudson and R S Larkin. “Accelerated image reconstruction using
ordered subsets of projection data”. In: IEEE Transactions on Medical Imaging
13.4 (1994), pp. 601–609. DOI: 10.1109/42.363108.
[165] Peter J Green. “Bayesian reconstructions from emission tomography data
using a modified EM algorithm”. In: IEEE Transactions on Medical Imaging
9.1 (1990), pp. 84–93. DOI: 10.1109/42.52985.
[166] WD Newhauser and R Zhang. “The physics of proton therapy”. In: Phys
Med Biol 60.8 (Apr. 2015).
[167] Scholz. “State of the Art and Future Prospects of Ion Beam Therapy:
Physical and Radiobiological Aspects”. In: IEEE Transactions on Radiation
and Plasma Medical Sciences 4.2 (Mar. 2020).
[168] H. Paganetti. “Range uncertainties in proton therapy and the role of
Monte Carlo simulations”. In: Phys. Med. Biol. 57 (2012), pp. 99–117.
[169] McGowan SE, Burnet NG, and Lomax AJ. “Treatment planning optimisation
in proton therapy”. In: Br J Radiol 86 (2013), pp. 2012–2088.
[170] H D Maccabee, U Madhvanath, and M R Raju. “Tissue activation studies
with alpha-particle beams”. In: Phys. Med. Biol. 14 (1969), p. 213.
[171] G.W. Bennett et al. “Beam localization via 15O activation in protonradiation
therapy”. In: Nucl. Instrum. Methods 125 (1975), pp. 333–8.
[172] Enghardt W et al. “The spatial distribution of positron-emitting nuclei
generated by relativistic light ion beams in organic matter”. In: Phys. Med.
Biol. 37 (1992).
[173] K. Parodi and W. Enghardt. “Potential application of PET in quality assurance
of proton therapy”. In: Phys. Med. Biol. 45 (2000), pp. 151–170.
[174] K. Parodi et al. “PET/CT imaging for treatment verification after proton
therapy: A study with plastic phantoms and metallic implants”. In: Med
Phys. 34.2 (2007).
[175] A. Miyatake et al. “Measurement and verification of positron emitter nuclei
generated at each treatment site by target nuclear fragment reactions
in proton therapy”. In: Med. Phys (10, volume = 37, number = 8, month =
8).
[176] Y. Shao et al. “In-beam PET imaging for on-line adaptive proton therapy:
an initial phantom study”. In: Phys. Med. Biol. 59 (2014).
[177] M. A. Piliero et al. “First results of the INSIDE in-beam PET scanner
for the on-line monitoring of particle therapy treatments”. In: JINST 11
(2016), p. C12011.
186
[178] S. Binet et al. “Construction and First Tests of an in-beam PET Demonstrator
Dedicated to the Ballistic Control of Hadrontherapy Treatments
With 65 MeV Protons”. In: IEEE Transactions on Radiation and Plasma Medical
Sciences 2.1 (Jan. 2018).
[179] H. Tashima et al. “Development of a multi-use human-scale single-ring
OpenPET system”. In: IEEE Transactions on Radiation and Plasma Medical
Sciences (Nov. 2020).
[180] P. Crespo et al. “Suppression of Random coincidences during in-beam
PET measurements at ion beam radiotherapy facilities”. In: IEEE Trans
Nucl Sci 52 (2005), p. 980.
[181] H. J. T. Buitenhuis et al. “Beam-on imaging of short-lived positron emitters
during proton therapy”. In: Phys Med Biol 62 (2017), p. 4654.
[182] J. J. R. Frausto da Silva and R. Williams. The Biological Chemistry of the
Elements. 1991. ISBN: 0198508484.
[183] X. Zhu and G. El Fakhri. “Proton Therapy Verification with PET Imaging”.
In: Theranostics 3.10 (2013).
[184] A Knopf et al. “Systematic analysis of biological and physical limitations
of proton beam range verification with offline PET/CT scans”. In: Phys.
Med. Biol. 54 (2009), pp. 4477–4495.
[185] P Dendooven et al. “Short-lived positron emitters in beam-on PET imaging
during proton therapy”. In: Phys. Med. Biol. 60 (2015), pp. 8923–8947.
[186] P Dendooven et al. “Corrigendum: Short-lived positron emitters in
beam-on PET imaging during proton therapy”. In: Phys. Med. Biol. 64
(2019), p. 129501.
[187] Harion et al. “STiC - a mixed mode silicon photomultiplier readout ASIC
for time-of-flight applications”. In: JINST 9 (2014), p. C02003.
[188] W. Enghardt et al. “Charged hadron tumour therapy monitoring by
means of PET”. In: Nuclear Instruments and Methods in Physics Research
A 525 (2004), pp. 284–288.
[189] National Institute of Standards and Technology (NIST). Stopping-Power
and Range Tables for Protons. Accessed: current year. URL: https : / /
physics.nist.gov/cgi-bin/Star/ap_table.pl.
[190] Ozoemelam et al. “Feasibility of quasi-prompt PET-based range verification
in proton therapy”. In: Phys. Med. Biol. 65 (2020), p. 245013.
[191] M. T. Studenski and Y. Xiao. “Proton therapy dosimetry using positron
emission tomography”. In: World Journal of Radiology 2.4 (Apr. 2010),
pp. 135–142.
187
[192] F. Horst et al. “Measurement of PET isotope production cross sections for
protons and carbon ions on carbon and oxygen targets for applications
in particle therapy range verification”. In: Physics in Medicine and Biology
64.16 (2019), p. 205012.
[193] A. Bongrand et al. “Use of short-lived positron emitters for in-beam and
real-time β+ range monitoring in proton therapy”. In: Physica Medica 69
(2020), pp. 248–255.
[194] R. L. Siddon. “Fast calculation of the exact radiological path for a 3-
dimensional CT array”. In: Medical Physics 12 (1985), p. 229.
[195] H. Wang et al. “Hypoxic Radioresistance: Can ROS Be the Key to Overcome
It?” In: Cancers 11 (112 2019).
[196] Hsiao-Ming Lu. “A potential method for in vivo range verification in
proton therapy treatment”. In: Physics in Medicine & Biology 53.5 (2008),
p. 1413.
[197] David A Watts et al. “A proton range telescope for quality assurance
in hadrontherapy”. In: 2009 IEEE Nuclear Science Symposium Conference
Record (NSS/MIC). IEEE. 2009, pp. 4163–4166.
[198] K Parodi. “Potential application of PET in quality assurance of proton
therapy”. In: 45.11 (Oct. 2000), pp. 151–156. DOI: 10.1088/0031-9155/
45/11/403. URL: https://doi.org/10.1088/0031-9155/45/
11/403.
[199] Chul-Hee Min et al. “Prompt gamma measurements for locating the dose
falloff region in the proton therapy”. In: Applied physics letters 89.18 (2006),
p. 183517.
[200] Harald Paganetti. “Range uncertainties in proton therapy and the role
of Monte Carlo simulations”. In: 57.11 (May 2012), pp. 99–117. DOI: 10.
1088/0031-9155/57/11/r99. URL: https://doi.org/10.1088/
0031-9155/57/11/r99.
[201] Katia Parodi et al. “Patient Study of In Vivo Verification of Beam Delivery
and Range, Using Positron Emission Tomography and Computed
Tomography Imaging After Proton Therapy”. In: International Journal of
Radiation Oncology Biology Physics 68.3 (2007), pp. 920–934. ISSN: 0360-
3016. DOI: https://doi.org/10.1016/j.ijrobp.2007.01.063.
URL: https://www.sciencedirect.com/science/article/
pii/S036030160700377X.
[202] A.M.J. Paans and J.M. Schippers. “Proton therapy in combination with
PET as monitor: a feasibility study”. In: IEEE Transactions on Nuclear Science
40.4 (1993), pp. 1041–1044. DOI: 10.1109/23.256709.
188
[203] Juan José Vaquero and Paul Kinahan. “Positron Emission Tomography:
Current Challenges and Opportunities for Technological Advances in
Clinical and Preclinical Imaging Systems”. In: Annual Review of Biomedical
Engineering 17.1 (2015). PMID: 26643024, pp. 385–414. DOI: 10.1146/
annurev- bioeng- 071114- 040723. eprint: https://doi.org/
10.1146/annurev-bioeng-071114-040723. URL: https://doi.
org/10.1146/annurev-bioeng-071114-040723.
[204] Adam Alessio, Ken Sauer, and Paul Kinahan. “Analytical reconstruction
of deconvolved Fourier rebinned PET sinograms”. In: Physics in medicine
& biology 51.1 (2005), p. 77.
[205] Shan Tong, Adam M Alessio, and Paul E Kinahan. “Image reconstruction
for PET/CT scanners: past achievements and future challenges”. In:
Imaging in medicine 2.5 (Oct. 2010), pp. 529–545. ISSN: 1755–5191. DOI:
10.2217/iim.10.49.
[206] A. Iriarte et al. “System models for PET statistical iterative reconstruction:
A review”. In: Computerized Medical Imaging and Graphics
48 (2016), pp. 30–48. ISSN: 0895–6111. DOI: https : / / doi . org /
10 . 1016 / j . compmedimag . 2015 . 12 . 003. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0895611115001901.
[207] H Paganetti and G El Fakhri. “Monitoring proton therapy with PET”. In:
The British journal of radiology 88.1051 (2015), pp. 2015–2173.
[208] W. Enghardt et al. “Dose quantification from in-beam positron emission
tomography”. In: Radiotherapy and Oncology 73 (2004). Carbon-Ion Theraphy,
S96–S98. ISSN: 0167–8140. DOI: https://doi.org/10.1016/
S0167-8140(04)80024-0. URL: https://www.sciencedirect.
com/science/article/pii/S0167814004800240.
[209] Fine Fiedler et al. “On the effectiveness of ion range determination from
in-beam PET data”. In: Physics in Medicine & Biology 55.7 (2010), p. 1989.
[210] E Fourkal, J Fan, and I Veltchev. “Absolute dose reconstruction in proton
therapy using PET imaging modality: feasibility study”. In: 54.11 (May
2009), pp. 217–228. DOI: 10.1088/0031- 9155/54/11/n02. URL:
https://doi.org/10.1088/0031-9155/54/11/n02.
[211] Katia Parodi and Thomas Bortfeld. “A filtering approach based on Gaussian–
powerlaw convolutions for local PET verification of proton radiotherapy”.
In: 51.8 (Mar. 2006), pp. 1991–2009. DOI: 10 . 1088 / 0031 -
9155/51/8/003. URL: https://doi.org/10.1088/0031-9155/
51/8/003.
189
[212] F Attanasi et al. “Extension and validation of an analytical model for invivo
PET verification of proton therapy: a phantom and clinical study”.
In: 56.16 (July 2011), pp. 5079–5098. DOI: 10.1088/0031-9155/56/
16/001. URL: https://doi.org/10.1088/0031-9155/56/16/
001.
[213] Steffen Remmele et al. “A deconvolution approach for PET-based dose
reconstruction in proton radiotherapy”. In: 56.23 (Nov. 2011), pp. 7601–
7619. DOI: 10.1088/0031-9155/56/23/017. URL: https://doi.
org/10.1088/0031-9155/56/23/017.
[214] Takamitsu Masuda et al. “MLEM algorithm for dose estimation using
PET in proton therapy”. In: 64.17 (Sept. 2019), pp. 175–200. DOI: 10 .
1088/1361- 6560/ab3276. URL: https://doi.org/10.1088/
1361-6560/ab3276.
[215] Chuang Liu et al. “Range and dose verification in proton therapy using
proton-induced positron emitters and recurrent neural networks
(RNNs)”. In: 64.17 (Sept. 2019). DOI: 10.1088/1361-6560/ab3564.
URL: https://doi.org/10.1088/1361-6560/ab3564.
[216] Zongsheng Hu et al. “A machine learning framework with anatomical
prior for online dose verification using positron emitters and PET in proton
therapy”. In: 65.18 (Sept. 2020), p. 185003. DOI: 10.1088/1361-
6560/ab9707. URL: https://doi.org/10.1088/1361- 6560/
ab9707.
[217] Xiaoke Zhang et al. “Dose calculation in proton therapy using a discovery
cross-domain generative adversarial network (DiscoGAN)”. In: Medical
Physics 48.5 (2021), pp. 2646–2660.
[218] Ida Häggström et al. “DeepPET: A deep encoder–decoder network for
directly solving the PET image reconstruction inverse problem”. In:
Medical Image Analysis 54 (2019), pp. 253–262. ISSN: 1361-8415. DOI:
https : / / doi . org / 10 . 1016 / j . media . 2019 . 03 . 013. URL:
https://www.sciencedirect.com/science/article/pii/
S1361841518305838.
[219] Olaf Ronneberger and Thomas Fischer Philippand Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015. Ed. by
Nassir Navab et al. Springer International Publishing, 2015, pp. 234–241.
[220] Zhong Su et al. “Evaluations of a flat-panel based compact daily quality
assurance device for proton pencil beam scanning (PBS) system”. In:
Physica Medica 80 (2020), pp. 243–250.
190
[221] Ikechi Ozoemelam et al. “Feasibility of quasi-prompt PET-based range
verification in proton therapy”. In: Physics in Medicine & Biology 65.24
(2020), p. 245013.
[222] U Oelfke, G K Y Lam, and M S Atkins. “Proton dose monitoring with
PET: quantitative studies in Lucite.” In: 41.1 (Jan. 1996), pp. 177–196. DOI:
10.1088/0031-9155/41/1/013. URL: https://doi.org/10.
1088/0031-9155/41/1/013.
[223] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial
Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017), pp. 5967–5976.
[224] S Jan et al. “GATE V6: a major enhancement of the GATE simulation platform
enabling modelling of CT and radiotherapy”. In: 56.4 (Jan. 2011),
pp. 881–901. DOI: 10.1088/0031- 9155/56/4/001. URL: https:
//doi.org/10.1088/0031-9155/56/4/001.
[225] L Grevillot et al. “A Monte Carlo pencil beam scanning model for proton
treatment plan simulation using GATE/GEANT4”. In: 56.16 (July 2011),
pp. 5203–5219. DOI: 10.1088/0031-9155/56/16/008. URL: https:
//doi.org/10.1088/0031-9155/56/16/008.
[226] Wilfried Schneider, Thomas Bortfeld, and Wolfgang Schlegel. “Correlation
between CT numbers and tissue parameters needed for Monte Carlo
simulations of clinical dose distributions”. In: 45.2 (Jan. 2000), pp. 459–
478. DOI: 10.1088/0031-9155/45/2/314. URL: https://doi.
org/10.1088/0031-9155/45/2/314.
[227] Carla Winterhalter et al. “Evaluation of GATE-RTion (GATE/Geant4)
Monte Carlo simulation settings for proton pencil beam scanning quality
assurance”. In: Medical Physics 47.11 (2020), pp. 5817–5828.
[228] Thomas Bortfeld and Wolfgang Schlegel. “An analytical approximation
of depth-dose distributions for therapeutic proton beams”. In: Physics in
Medicine & Biology 41.8 (1996), p. 1331.
[229] David Jette andWeimin Chen. “Creating a spread-out Bragg peak in proton
beams”. In: Physics in Medicine & Biology 56.11 (2011), N131.
[230] Asako Kanezaki et al. “Deep learning for multimodal data fusion”. In:
Multimodal Scene Understanding. Elsevier, 2019, pp. 20–22.
[231] Subhadip Mukherjee et al. “End-to-end reconstruction meets data-driven
regularization for inverse problems”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates,
Inc., 2021, pp. 21413–21425. URL: https://proceedings.neurips.
cc/paper/2021/file/b2df0a0d4116c55f81fd5aa1ef876510-
Paper.pdf.
191
[232] Espagna S. and Paganetti H. “The impact of uncertainties in the CT conversion
algorithm when predicting proton beam ranges in patients from
dose and PET-activity distributions”. In: Physics in Medicine & Biology 55
(2010), pp. 7557–7571.DOI: 10.1088/0031-9155/55/24/011. |