博碩士論文 106282601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.143.237.203
姓名 爾拉(Atiq Ur Rahman)  查詢紙本館藏   畢業系所 物理學系
論文名稱 雙頭平面PET系統的影像重建與質子治療中的深度學習應用"
(Image Reconstruction for Dual Head Plane PET System and Deep Learning Based Application in Proton Therapy)
相關論文
★ 費米實驗室CDFII探測器利用J/psi J/psi 衰變途徑尋找eta_b粒子之研究★ Searches for Higgs pair production and probing the Higgs self-couplings in the HH→bbττ decay channel at the ATLAS Experiment and performance studies for the High-Granularity Timing Detector for ATLAS phase-2 upgrade
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的第一部分探討了正子發射斷層掃描(PET)成像的前沿技術,通過開發一種新型旋轉雙頭PET系統,旨在克服緊湊型PET探測器中固有的空間分辨率限制。該方法的核心是引入一種基於最大似然估計方法(MLEM)的三角重建技術。我們使用GATE/Geant4 10.4模擬工具包進行探測器模擬,並開發了自己的圖像重建框架。估計了圖像分辨率和探測器靈敏度。使用三角重建方法,沿有限角度軸的分辨率從3.6毫米提高到1.7毫米。

論文的第二部分深入研究了通過深度學習提高粒子治療劑量分佈的準確性。我們關注從探測器數據到內在劑量分佈的轉換,使用GATE/Geant4對暴露於高能質子的人類CT模型進行蒙特卡羅模擬。採用條件生成對抗網絡,我們開發了一個神經網絡模型,從PET符合分佈中推斷劑量圖。我們的模型通過平均相對誤差和布拉格峰位置偏差進行評估,顯示在單能量輻照中,劑量偏差在1%以內,範圍在2%以內,且在實際的展寬布拉格峰條件下性能保持穩定。這項工作證明了深度學習用於將低計數數據映射到劑量分佈的可行性,為粒子治療成像帶來了進展。

項目的第三部分檢查了質子治療劑量沉積的精確度,重點是使用中研院PET的模塊化設計以及SiPMs和STiC asic讀出,進行範圍驗證。該研究展示了130 MeV質子輻照PMMA時正子發射體的深度分佈,並將長庚紀念醫院緊湊的32通道設置的測量結果與Geant4模擬進行比較。通過計時能力和不同同位素的多指數擬合分析的結果驗證了解剖變化估計在連續治療期間的實施。此外,我們介紹了AS-PET的模塊化設計及其模擬成像性能,突出其在質子治療範圍驗證中的潛力。這項論文研究可以幫助改善平板PET系統的PET圖像質量,可作為粒子治療中治療計劃和質量保證的有價值工具。
摘要(英) The first part of the thesis explores the frontier of Positron Emission Tomography (PET) imaging through the development of a novel rotating dual-head PET system, aimed at overcoming the inherent spatial resolution limitations within compact PET detectors. Central to this method is the introduction of a three-angle reconstruction technique utilizing the basic Maximum Likelihood Estimation Method (MLEM). We use GATE/Geant4 10.4 simulation toolkit to perform detector simulation and have developed our own image reconstruction framework.Image resolution and detector sensitivity are estimated. The resolution along limited-angle axis is improved from 3.6 mm to 1.7 mm using three-angle reconstruction approach.

The second part of the thesis delves into enhancing dose distribution accuracy in particle therapy through deep learning. Focusing on the transition from detector data to intrinsic dose distributions, we utilize Monte Carlo simulations with GATE/Geant4 on a human CT phantom exposed to high-energy protons. Employing a conditional generative adversarial network, we develop a neural network model to infer dose maps from PET coincidence distributions. Our model, evaluated by mean relative error and deviations in Bragg peak position, demonstrates deviations within 1% for dose and 2% for range in mono-energetic irradiations, with performance sustained under realistic spread-out Bragg peak conditions. This work underscores the feasibility of deep learning for mapping low count data to dose distributions, promising advancements in particle therapy imaging.


The third part of project examines the precision of proton therapy dose deposition, focusing on range verification using the Academia Sinica PET′s modular design with SiPMs and STiC asic readout. This study presents the positron emitter depth distribution in PMMA irradiated by 130 MeV protons, comparing measurements from a compact 32-channel setup at Chang Gung Memorial Hospital with Geant4 simulations. The results, validated by timing capabilities and multi-exponential fit analysis of different isotopes, confirms the implementation on anatomical change estimation during successive treatment sessions. Additionally, we introduce the AS-PET′s modular design and its simulated imaging performance, highlighting its potential in range verification for proton therapy. This thesis research can help to improve the PET image quality for flat-panel PET systems and can be a valuable tool for treatment planning and quality assurance in particle therapy.
關鍵字(中) ★ 正子發射斷層掃描
★ 正子發射斷層掃描(PET)成像
★ 三角度影像重建
★ 質子劑量預測
★ 醫學成像中的深度學習
關鍵字(英) ★ Positron Emission Tomography
★ PET Imaging
★ Three angle image reconstruction
★ Proton Dose Prediction
★ Deep Learning in Medical Imaging
論文目次 Contents
1 Introduction 1
1.1 Positron Emission Tomography . . . . . . . . . . . . . . . . . . . . 3
1.2 A Brief History of PET Imaging . . . . . . . . . . . . . . . . . . . . 5
1.3 Background of flat-Panel PET systems . . . . . . . . . . . . . . . . 6
1.3.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . 9
2 Physics of Positron Emission Tomography 11
2.1 FDG in PET Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Radiotracer Decay in PET . . . . . . . . . . . . . . . . . . . 13
2.1.2 Annihilation Phenomenon . . . . . . . . . . . . . . . . . . 14
2.1.3 Implications of Positron Range in PET Imaging . . . . . . 15
2.1.4 Photon Non-Collinearity . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Gamma Detection in PET Imaging . . . . . . . . . . . . . . 16
2.1.6 Processes of Light Matter Interaction . . . . . . . . . . . . . 17
Photoelectric Absorption . . . . . . . . . . . . . . . . . . . 17
Compton Scattering . . . . . . . . . . . . . . . . . . . . . . 19
Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . 19
Pair production . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Photon Interaction Cross-Section. . . . . . . . . . . . . . . 21
2.2 Scintillation Process and Detectors . . . . . . . . . . . . . . . . . . 22
2.2.1 Inorganic Scintillators . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Organic Scintillators . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Scintillation Crystal Properties for 511 keV Gamma Pho-
ton Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ix
2.3 Photodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Photo-Multiplier Tubes (PMT) . . . . . . . . . . . . . . . . 24
2.3.2 Block Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 25
Spatial Resolution Limitations . . . . . . . . . . . . . . . . 26
2.3.3 Solid State Photodetectors . . . . . . . . . . . . . . . . . . . 27
2.3.4 Spatial Resolution in PET Systems . . . . . . . . . . . . . . 28
3 Image Reconstruction of Plane PET System 29
3.1 ASPET geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Monte-carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Monte Carlo Method in PET Imaging . . . . . . . . . . . . 29
3.2.2 Geant4/Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 GATE Simulation Architecture . . . . . . . . . . . . . . . . . . . . 31
3.3.1 World volume . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Choosing a PET system . . . . . . . . . . . . . . . . . . . . 32
3.3.3 First Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Seond Volume . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Third volume . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.6 Fourth Volume . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.7 Fifth Volume . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.8 Crystal mapping . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.9 Physics list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.10 Reduction Cuts in Simulations . . . . . . . . . . . . . . . . 36
3.3.11 Readout chain and digitizer . . . . . . . . . . . . . . . . . . 37
Digitization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Energy blurring . . . . . . . . . . . . . . . . . . . . . . . . . 38
Time resolution . . . . . . . . . . . . . . . . . . . . . . . . . 38
Time of Flight . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Coincidence Sorter . . . . . . . . . . . . . . . . . . . . . . . 40
x
Detector calibration . . . . . . . . . . . . . . . . . . . . . . . 40
Output format . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ASCII and Binary Outputs . . . . . . . . . . . . . . . . . . . 41
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Evaluation of Scatter Fraction and Count Rate Performance
using a Rat-Sized Phantom . . . . . . . . . . . . . . . . . . 45
3.5 Approaches for Image Reconstruction . . . . . . . . . . . . . . . . 48
3.5.1 Back Projection in PET Imaging . . . . . . . . . . . . . . . . 48
3.5.2 Filtered Back Projection Method . . . . . . . . . . . . . . . 50
3.5.3 Iterative Reconstruction . . . . . . . . . . . . . . . . . . . . 50
Maximum Likelihood Estimation . . . . . . . . . . . . . . . 51
Application of Maximum Likelihood Estimation to Pois-
son Distribution . . . . . . . . . . . . . . . . . . . 52
Forward Projection . . . . . . . . . . . . . . . . . . . . . . . 54
Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Backward Projection . . . . . . . . . . . . . . . . . . . . . . 55
Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Calculating System Response Matrix . . . . . . . . . . . . . . . . . 57
3.6.1 Technical Challenges in Image Reconstruction . . . . . . . 62
3.7 Symmetry properties of ASPET . . . . . . . . . . . . . . . . . . . . 63
3.7.1 Response of detector to a point source . . . . . . . . . . . . 63
Shift Invariance . . . . . . . . . . . . . . . . . . . . . . . . . 64
Interchangeability . . . . . . . . . . . . . . . . . . . . . . . 65
Axial Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2 Pseudo-code of SRM calculation . . . . . . . . . . . . . . . 67
3.7.3 Structure of the SRM . . . . . . . . . . . . . . . . . . . . . . 68
3.7.4 Approach to reduce parallax error on image resolution . . 69
3.7.5 Siddon ’s raytracing method . . . . . . . . . . . . . . . . . 69
xi
Similarity in SRM voxels . . . . . . . . . . . . . . . . . . . . 71
3.8 Image evaluation phantom . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9.1 Spatial resolutions evaluated by single point source . . . . 72
3.9.2 Spatial Resolution in Multi-Source Environments . . . . . 73
Average resolution . . . . . . . . . . . . . . . . . . . . . . . 74
Spatial resolution as function of distance . . . . . . . . . . 74
3.9.3 Effect of iterations on resolution . . . . . . . . . . . . . . . 74
3.9.4 Reconstructed point sources . . . . . . . . . . . . . . . . . . 75
3.9.5 Derenzo phantom: cylinders were along x-direction . . . . 75
3.9.6 Derenzo phantom: cylinders were along y-direction . . . . 75
4 Three Angle Reconstruction 87
4.1 Three Angle Reconstruction . . . . . . . . . . . . . . . . . . . . . . 87
4.1.1 Scheme-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.2 Scheme-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.3 Change in detector setup . . . . . . . . . . . . . . . . . . . 90
Schematic of three angle reconstruction . . . . . . . . . . . 91
MLEM for Three Angle Reconstruction . . . . . . . . . . . 91
4.1.4 Generalized MLEM Equation for Multi-angle Reconstruc-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Image Rotation Around the Y-Axis . . . . . . . . . . . . . . . . . . 94
4.3 Forward and Inverse Image Rotation: Significance and Drawbacks 95
4.3.1 Forward Rotation . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Inverse Rotation . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Derenzo Phantom for PET Imaging Performance Evaluation . . . 97
4.5 Practical Challenges in Implementing a Rotary ASPET . . . . . . 97
4.6 Artifacts and Limitations of MLEM in PET Imaging . . . . . . . . 99
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
xii
4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.9 Results:Three angle reconstruction schemes . . . . . . . . . . . . . 101
4.9.1 Scheme1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9.2 Scheme-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9.3 Detector resolutions . . . . . . . . . . . . . . . . . . . . . . 102
Resolution along x-axis . . . . . . . . . . . . . . . . . . . . 102
Resolution along y-axis . . . . . . . . . . . . . . . . . . . . 102
Resolution along z-axis . . . . . . . . . . . . . . . . . . . . 108
4.9.4 Relative Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9.5 Cylindrical arrangement of point sources . . . . . . . . . . 110
4.9.6 Derenzo phantom . . . . . . . . . . . . . . . . . . . . . . . 111
4.9.7 Hoffman phantom . . . . . . . . . . . . . . . . . . . . . . . 111
Comparison of ground truth with reconstructed slices . . 111
4.9.8 Reconstructed Hoffman Phantom . . . . . . . . . . . . . . 111
4.9.9 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5 Positron Emitter Depth Distribution in PMMA Irradiated with 130 MeV
Protons Measured using TOF-PET Detectors 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.1 Coincidence testing setup . . . . . . . . . . . . . . . . . . . 135
5.2.2 Experimental design for the beam test . . . . . . . . . . . . 137
5.2.3 AS-PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.4 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.5 Exponential distribution calculations . . . . . . . . . . . . 139
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
xiii
5.3.1 Depth distribution of β+ emitters . . . . . . . . . . . . . . . 141
5.3.2 Ratio of the β+ emitting isotopes . . . . . . . . . . . . . . . 143
5.3.3 Range shifts using simulated data . . . . . . . . . . . . . . 146
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6 Direct mapping from PET coincidence data to proton-dose and positron
activity using a deep learning approach 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.1 Proton Beam Irradiation Simulations . . . . . . . . . . . . 154
6.2.2 Configuration for Detector Simulation . . . . . . . . . . . . 155
6.2.3 Framework for Deep Learning . . . . . . . . . . . . . . . . 157
6.2.4 Conditional Generative Adversarial Network Structure . . 158
6.2.5 Preparation of Training Data . . . . . . . . . . . . . . . . . 160
6.2.6 Criteria for Model Performance Evaluation . . . . . . . . . 161
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.1 Assessment of Dose Distribution and Isotope Mapping . . 162
6.3.2 Dose Distribution and Isotope Mapping Efficacy . . . . . . 163
6.3.3 Evaluating Model Efficacy . . . . . . . . . . . . . . . . . . . 164
6.3.4 Coincidence Data Evaluation . . . . . . . . . . . . . . . . . 167
6.3.5 Influence of Detection Threshold on Model Efficacy . . . . 169
6.3.6 Impact of Cross-section Variability and Material Compo-
sition on Model Accuracy . . . . . . . . . . . . . . . . . . . 170
6.3.7 Evaluation of Sensitivity Factors . . . . . . . . . . . . . . . 171
6.3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Bibliography 175
xiv
參考文獻 Bibliography
[1] Eric M. Rohren, Timothy G. Turkington, and R. Edward Coleman. “Clinical
Applications of PET in Oncology”. In: Radiology 231.2 (2004), pp. 305–
332.
[2] Carl K Hoh et al. “Cancer Detection with Whole-Body PET Using 2-
[18F]Fluoro-2-Deoxy-D-Glucose”. In: Journal of Computer Assisted Tomography
17.4 (July 1993), pp. 582–589.
[3] P S Conti. The applications of PET in clinical oncology. 1991.
[4] Michael A Nader et al. “PET imaging of dopamine D2 receptors during
chronic cocaine self-administration in monkeys”. In: Nature neuroscience
9.8 (2006), p. 1050.
[5] Jinyi Qi et al. “High-resolution 3D Bayesian image reconstruction using
the microPET small-animal scanner”. In: Physics in Medicine & Biology
43.4 (1998), p. 1001.
[6] Alberto Motta et al. “Fast 3D-EM reconstruction using Planograms for
stationary planar positron emission mammography camera”. In: Computers
in Medical Imaging and Graphics 29.5 (2005), pp. 587–596.
[7] S. Surti and J. S. Karp. “Advances in time-of-flight PET”. In: Physics in
Medicine and Biology 52.5 (2007), R1.
[8] J. Zhang et al. “Advanced DOI Correction Methods in PET Imaging”. In:
Journal of Clinical Imaging Science 10.3 (2007), pp. 45–52.
[9] Chih-Ming Kao et al. “A high-sensitivity small-animal PET scanner: Development
and initial performance measurements”. In: IEEE Transactions
on Nuclear Science 56.5 (2009), pp. 2678–2688.
[10] Lawrence R MacDonald et al. “Clinical imaging characteristics of
the positron emission mammography/tomography breast imaging and
biopsy system (PEM/PET): Design, construction, and phantom-based
measurements”. In: Journal of Nuclear Medicine 50.10 (2009), pp. 1666–
1675.
[11] Hao Peng and Craig S Levin. “Design study of a high-resolution breastdedicated
PET system built from cadmium zinc telluride detectors”. In:
Physics in Medicine and Biology 55.11 (2010), p. 2761.
173
[12] Hui Zhang et al. “Performance characteristics of BGO detectors for a low
cost preclinical PET scanner”. In: IEEE Transactions on Nuclear Science 57.3
(2010), pp. 1038–1044.
[13] WilliamWMoses and Jinyi Qi. “Fundamental limits of positron emission
mammography”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
497.1 (2003), pp. 82–89.
[14] Pablo Crespo, Georgy Shakirin, and Wolfgang Enghardt. “On the detector
arrangement for in-beam PET for hadron therapy monitoring”. In:
Physics in Medicine and Biology 51.11 (2006), p. 2143.
[15] Raymond R Raylman et al. “The positron emission mammography/tomography
breast imaging and biopsy system (PEM/PET): design, construction
and phantom-based measurements”. In: Physics in Medicine and
Biology 53.3 (2008), p. 637.
[16] Charles J Thompson et al. “Feasibility study for positron emission mammography”.
In: Medical Physics 21.4 (1994), pp. 529–538.
[17] Wen Luo, Evgeniy Anashkin, and Charles G Matthews. “Performance
evaluation of a PEM scanner using the NEMA NU 4 — 2008 small animal
PET standards”. In: IEEE Transactions on Nuclear Science 57.1 (2010),
pp. 94–100.
[18] Martin F Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In:
Physics in Medicine and Biology 49.11 (2004), p. 2437.
[19] Hui Zhang et al. “Performance evaluation of PETbox: a low cost bench
top preclinical PET scanner”. In: Molecular Imaging and Biology 13.5 (2011),
pp. 949–961.
[20] Alberto Guerra et al. “Performance evaluation of the fully engineered
YAP-(S)PET scanner for small animal imaging”. In: IEEE Transactions on
Nuclear Science 53.3 (2006), pp. 1078–1084.
[21] Peter Bruyndonckx et al. “Initial characterization of a nonpixelated scintillator
detector in a PET prototype demonstrator”. In: IEEE Transactions
on Nuclear Science 53.3 (2006), pp. 2543–2548.
[22] Peter Bruyndonckx et al. “Initial Characterization of a Nonpixelated Scintillator
Detector in a PET Prototype Demonstrator”. In: IEEE Transactions
on Nuclear Science 53.3 (2006), pp. 2543–2548.
[23] Hector Alva-Sanchez et al. “A Small-Animal PET System Based on LYSO
Crystal Arrays, PS-PMTs and a PCI DAQ Board”. In: IEEE Transactions on
Nuclear Science 57.3 (2010), pp. 85–91.
174
[24] Chih-Ming Kao et al. “Image reconstruction of a dual-head small-animal
PET system by using Monte-Carlo computed system response matrix”.
In: 9th International Meeting on Fully Three-Dimensional Image Reconstruction
in Radiology and Nuclear Medicine (2007), p. 398.
[25] Qiang Bao et al. “Image Reconstruction for PETbox, a Benchtop Preclinical
PET Tomograph”. In: IEEE Nuclear Science Symposium Conference
Record 2009 (2009), pp. 2733–2737.
[26] Ying Liu et al. “System response matrix calculation using symmetries for
dual-head PET scanners”. In: International Journal of Imaging Systems and
Technology 23.3 (2013), pp. 205–210.
[27] Chih-Ming Kao et al. “A High-Sensitivity Small-Animal PET Scanner:
Development and Initial Performance Measurements”. In: IEEE Transactions
on Nuclear Science 56.5 (2009), pp. 2678–2688.
[28] Chenxi Zhang et al. “Performance evaluation of a 90 degrees-rotating
dual-head small animal PET system”. In: Physics in Medicine and Biology
60.20 (2015), pp. 5873–5886.
[29] Stefan Siegel et al. “Initial results from a PET planar small animal imaging
system”. In: IEEE Transactions on Nuclear Science 46.3 (1999), pp. 571–
577.
[30] Sascha Moehrs et al. “Multi-ray-based system matrix generation for 3D
PET reconstruction”. In: Physics in Medicine and Biology 53.24 (2008),
pp. 6925–6947.
[31] Chih-Ming Kao, Yang Dong, and Qingguo Xie. “Evaluation of 3D image
reconstruction methods for a dual-head small-animal PET scanner”. In:
IEEE Nuclear Science Symposium Conference Record 2007 (2007), p. 072007.
[32] Feng Meng et al. “Influence of Rotation Increments on Imaging Performance
for a Rotatory Dual-Head PET System”. In: BioMed Research International
2017 (2017), p. 8615086.
[33] William H. Sweet. “The uses of nuclear disintegration in the diagnosis
and treatment of brain tumor”. In: N. Engl. J. Med. 245.23 (1951), pp. 875–
878. DOI: 10.1056/NEJM195112062452301.
[34] F. R. J.Wrenn, M. L. Good, and P. Handler. “The use of positron-emitting
radioisotopes for the localization of brain tumors”. In: Science 113.2940
(1951), pp. 525–527. DOI: 10.1126/science.113.2940.525.
[35] Michael E. Phelps et al. “Application of annihilation coincidence detection
to transaxial reconstruction tomography”. In: J. Nucl. Med. 16.3
(1973), pp. 210–224.
175
[36] Michael E. Phelps et al. “Design Considerations for a Positron Emission
Transaxial Tomograph (PETT III)”. In: IEEE Trans. Nucl. Sci. 23.1 (1976),
pp. 516–522. DOI: 10.1109/TNS.1976.4328298.
[37] Michel M. Ter-Pogossian et al. “A positron-emission transaxial tomograph
for nuclear imaging (PETT)”. In: Radiology 114.1 (1975), pp. 89–98.
DOI: 10.1148/114.1.89.
[38] C. Bohm et al. “A Computer Assisted Ringdetector Positron Camera System
for Reconstruction Tomography of the Brain”. In: IEEE Trans. Nucl.
Sci. 25.1 (1978), pp. 624–637. DOI: 10.1109/TNS.1978.4329384.
[39] Donald L. Snyder and David G. Politte. “Image Reconstruction from List-
Mode Data in an Emission Tomography System Having Time-of-Flight
Measurements”. In: IEEE Trans. Nucl. Sci. 30.3 (1983), pp. 1843–1849. DOI:
10.1109/TNS.1983.4332660.
[40] Michel M. Ter-Pogossian et al. “The super PET 3000-E: a PET scanner
designed for high count rate cardiac applications”. In: J. Comput. Assist.
Tomogr. 18.4 (1994), pp. 661–669.
[41] M. E. Casey and R. Nutt. “A Multicrystal Two Dimensional BGO Detector
System for Positron Emission Tomography”. In: IEEE Trans. Nucl. Sci. 33.1
(1986), pp. 460–463. DOI: 10.1109/TNS.1986.4337143.
[42] C. L. Melcher and J. S. Schweitzer. “Cerium-doped lutetium oxyorthosilicate:
a fast, efficient new scintillator”. In: IEEE Trans. Nucl. Sci. 39.4 (1992),
pp. 502–505. DOI: 10.1109/23.159655.
[43] S. R. Cherry et al. “MicroPET: a high resolution PET scanner for imaging
small animals”. In: IEEE Trans. Nucl. Sci. 44.3 (1997), pp. 1161–1166. DOI:
10.1109/23.596981.
[44] D. Visvikis, C. Cheze-Le Rest, and P. Jarritt. “PET technology: current
trends and future developments”. In: Journal of Nuclear Medicine and
Molecular Imaging 31 (2004), pp. 208–221.
[45] W. Luo, E. Anashkin, and C. Matthews. “Performance evaluation of a
PEM scanner using the NEMA NU 4 — 2008 small animal PET standards”.
In: IEEE Transactions on Nuclear Science 57.1 (2010), p. 94.
[46] P. Crespo, G. Shakirin, and W. Enghardt. “On the detector arrangement
for in-beam PET for hadron therapy monitoring”. In: Physics in Medicine
and Biology 51 (2006), p. 2143.
[47] J. S. Karp. “Against: Is LSO the future of PET?” In: European Journal of
Nuclear Medicine 29 (2002), pp. 1525–1528.
176
[48] M. F. Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In: Physics in
Medicine and Biology 49 (2004), p. 2437.
[49] H. Zhang et al. “Performance evaluation of PETbox: a low cost bench
top preclinical PET scanner”. In: Molecular Imaging and Biology 13 (2011),
p. 949.
[50] A. Guerra et al. “Performance evaluation of the fully engineered YAP-
(S)PET scanner for small animal imaging”. In: IEEE Transactions on Nuclear
Science 53 (2006), p. 1078.
[51] R. R. Raylman et al. “The positron emission mammography/tomography
breast imaging and biopsy system (PEM/PET): design, construction
and phantom-based measurements”. In: Physics in Medicine and Biology
53 (2008), p. 637.
[52] C. J. Thompson et al. “Feasibility study for positron emission mammography”.
In: Medical Physics 21 (1994), p. 529.
[53] Sascha Moehrs et al. “A small animal PET scanner based on LYSO crystal
arrays, PS-PMTs and a PCI DAQ board”. In: IEEE Transactions on Nuclear
Science 55.6 (2008), pp. 3134–3140.
[54] M. F. Smith et al. “Positron emission mammography with tomographic
acquisition using dual planar detectors: initial evaluations”. In: Physics in
Medicine and Biology 49 (2004), p. 2437.
[55] C. M. Kao et al. “A Monte Carlo approach to eliminate DOI blurring in
PET”. In: Journal of Instrumentation 12.9011 (2017).
[56] T. Beyer, D. W. Townsend, and T. M. Blodgett. “Dual modality PET/CT
tomography for clinical oncology”. In: Quarterly Journal of Nuclear
Medicine 46 (2002), pp. 24–34.
[57] Y. Shao et al. “Simultaneous PET and MR imaging”. In: Physics in
Medicine and Biology 42 (1997), pp. 1965–1970.
[58] Y.C. Tai et al. “Performance Evaluation of the MicroPET P4: A PET System
Dedicated to Animal Imaging”. In: Physics in Medicine & Biology 46.7
(2001), p. 1845.
[59] Christof Knoess et al. “Performance evaluation of the microPET R4 PET
scanner for rodents”. In: European journal of nuclear medicine and molecular
imaging 30.5 (2003), pp. 737–747.
[60] Marc C Huisman et al. “Performance evaluation of the Philips MOSAIC
small animal PET scanner”. In: European journal of Nuclear Medicine and
Molecular imaging 34.4 (2007), pp. 532–540.
177
[61] Klaus P. Schäfers et al. “Performance Evaluation of the 32-Module
quadHI-DAC Small-Animal PET Scanner”. In: Journal of Nuclear Medicine
46.6 (2005), pp. 996–1004.
[62] Richard Laforest et al. “Performance evaluation of the microPET R
—FOCUS-F120”. In: IEEE Transactions on Nuclear Science 54.1 (2007),
pp. 42–49.
[63] Andrew L Goertzen et al. “NEMA NU 4-2008 comparison of preclinical
PET imaging systems”. In: Journal of Nuclear Medicine 53.8 (2012),
pp. 1300–1309.
[64] Karl Ziemons et al. “The ClearPETTM Project: Development of a 2nd
Generation High-Performance Small Animal PET Scanner”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 537.1-2 (2005), pp. 307–311.
[65] Yuchuan Wang et al. “Performance Evaluation of the GE Healthcare eXplore
VISTA Dual-Ring Small-Animal PET Scanner”. In: Journal of Nuclear
Medicine 47.11 (2006), pp. 1891–1900.
[66] E Lage et al. “Design and performance evaluation of a coplanar multimodality
scanner for rodent imaging”. In: Physics in Medicine & Biology
54.18 (2009), p. 5427.
[67] Melanie Bergeron et al. “Imaging performance of LabPET APD-based
digital PET scanners for pre-clinical research”. In: Physics in Medicine &
Biology 59.3 (2014), p. 661.
[68] Melanie Bergeron et al. “Performance evaluation of the LabPET APDbased
digital PET scanner”. In: IEEE Transactions on Nuclear Science 56.1
(2009), pp. 10–16.
[69] K. Sato et al. “Performance Evaluation of the Small-Animal PET Scanner
ClairvivoPET Using NEMA NU 4-2008 Standards”. In: Physics in
Medicine & Biology 61.2 (2015), p. 696.
[70] Rameshwar Prasad, Osman Ratib, and Habib Zaidi. “Performance evaluation
of the FLEX triumph X-PET scanner using the national electrical
manufacturers association NU-4 standards”. In: Journal of Nuclear
Medicine 51.10 (2010), pp. 1608–1615.
[71] Kálmán Nagy et al. “Performance evaluation of the small-animal
nanoScan PET/MRI system”. In: Journal of Nuclear Medicine 54.10 (2013),
pp. 1825–1832.
[72] T.J. Spinks et al. “Quantitative PET and SPECT Performance Characteristics
of the Albira Trimodal Pre-clinical Tomograph”. In: Physics in
Medicine & Biology 59.3 (2014), p. 715.
178
[73] Luyao Wang et al. “Performance Evaluation of the Trans-PET R BioCaliburn
R LH System: A Large FOV Small-Animal PET System”. In: Physics
in Medicine & Biology 60.1 (2014), p. 137.
[74] Wai-Hoi Wong et al. “Engineering and Performance (NEMA and Animal)
of a Lower-Cost Higher-Resolution Animal PET/CT Scanner Using
Photomultiplier-Quadrant-Sharing Detectors”. In: Journal of Nuclear
Medicine 53.11 (2012), pp. 1786–1793.
[75] Istvan Szanda et al. “National Electrical Manufacturers Association NU-
4 Performance Evaluation of the PET Component of the NanoPET/CT
Preclinical PET/CT Scanner”. In: Journal of Nuclear Medicine 52.11 (2011),
pp. 1741–1747.
[76] Cristian C Constantinescu and Jogeshwar Mukherjee. “Performance
evaluation of an Inveon PET preclinical scanner”. In: Physics in Medicine
& Biology 54.9 (2009), p. 2885.
[77] Nicola Belcari et al. “NEMA NU-4 performance evaluation of the IRIS
PET/CT preclinical scanner”. In: IEEE Transactions on Radiation and
Plasma Medical Sciences 1.4 (2017), pp. 301–309.
[78] Matthew G Vander Heiden, Lewis C Cantley, and Craig B Thompson.
“Understanding the Warburg effect: the metabolic requirements of cell
proliferation”. In: science 324.5930 (2009), pp. 1029–1033.
[79] Khalid O Alfarouk et al. “Glycolysis, tumor metabolism, cancer growth
and dissemination. A new pH-based etiopathogenic perspective and
therapeutic approach to an old cancer question”. In: Oncoscience 1.12
(2014), p. 777.
[80] Angela M Otto. “Warburg effect (s)—a biographical sketch of Otto Warburg
and his impacts on tumor metabolism”. In: Cancer & metabolism 4.1
(2016), pp. 1–8.
[81] The Nobel Prize in Physiology or Medicine 1931. NobelPrize.org. Accessed:
2nd February 2024. URL: https://www.nobelprize.org/prizes/
medicine/1931/summary/.
[82] Didier Le Bars. “Fluorine-18 and medical imaging: Radiopharmaceuticals
for positron emission tomography”. In: Journal of Fluorine Chemistry
127.11 (2006), pp. 1488–1493.
[83] Orit Jacobson, Dale O Kiesewetter, and Xiaoyuan Chen. “Fluorine-18 radiochemistry,
labeling strategies and synthetic routes”. In: Bioconjugate
chemistry 26.1 (2014), pp. 1–18.
179
[84] Wim JG Oyen et al. “Role of FDG-PET in the diagnosis and management
of lung cancer”. In: Expert Review of Anticancer Therapy 4.4 (Aug. 2004),
pp. 561–567.
[85] R.A. Schmid et al. “Staging of Recurrent and Advanced Lung Cancer
with 18F-FDG PET in a Coincidence Technique (Hybrid PET)”. In: Nuclear
Medicine Communications 24.1 (2003), pp. 37–45.
[86] Rodney J Hicks et al. “The utility of 18F-FDG PET for suspected recurrent
non–small cell lung cancer after potentially curative therapy: impact on
management and prognostic stratification”. In: Journal of Nuclear Medicine
42.11 (2001), pp. 1605–1613.
[87] Rodney J Hicks. “Role of 18F-FDG PET in assessment of response in
non–small cell lung cancer”. In: Journal of Nuclear Medicine (2009).
[88] F Castell and GJR Cook. “Quantitative techniques in 18 FDG PET scanning
in oncology”. In: British Journal of Cancer 98.10 (2008), p. 1597.
[89] James H.F. Rudd et al. “Imaging Atherosclerotic Plaque Inflammation by
Fluorodeoxyglucose with Positron Emission Tomography”. In: Journal of
the American College of Cardiology 55.23 (June 2010), pp. 2527–2535.
[90] RR Trinder et al. “Theragnostics-Alternative production of terbium isotopes
at the University of Birmingham using an MC40 cyclotron”. In:
Journal of Physics: Conference Series. Vol. 1643. 1. IOP Publishing. 2020,
p. 012209.
[91] Michael E Phelps, ed. PET. Springer New York, 2006.
[92] Patries M Herst and Michael V Berridge. “Cell hierarchy, metabolic flexibility
and systems approaches to cancer treatment”. In: Current pharmaceutical
biotechnology 14.3 (2013), pp. 289–299.
[93] Jim Rees. PET Scan of a Healthy Brain Compared to a Brain at an Early Stage
of Alzheimer’s Disease. http://www.douglas.qc.ca/. Image courtesy
of Douglas Mental Health University Institute, available on https:
//www.flickr.com/people/institut-douglas/. Accessed on
February 2, 2024. 2024.
[94] Simon R. Cherry and Sanjiv Sam Gambhir. “Use of positron emission
tomography in animal research.” In: ILAR journal 423 (2001), pp. 219–32.
URL: https://api.semanticscholar.org/CorpusID:15585648.
[95] William W Moses. “Fundamental limits of spatial resolution in PET”. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 648 (2011), pp. 236–240.
180
[96] Craig S Levin and Edward J Hoffman. “Calculation of positron range
and its effect on the fundamental limit of positron emission tomography
system spatial resolution”. In: Physics in Medicine & Biology 44.3 (1999),
p. 781.
[97] C Le Loirec and C Champion. “Track structure simulation for positron
emitters of physical interest. Part II: The case of the radiometals”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 582.2 (2007), pp. 654–664.
[98] Lars Jødal, Cindy Le Loirec, and Christophe Champion. “Positron range
in PET imaging: Non-conventional isotopes”. In: Physics in medicine and
biology 59 (Nov. 2014), pp. 7419–7434.
[99] Simon R. Cherry, James A. Sorenson, and Michael E. Phelps. “Physics in
Nuclear Medicine”. In: (2012).
[100] Glenn F. Knoll. Radiation Detection and Measurement. John Wiley & Sons,
2010.
[101] J. M. Ollinger. “Model based scatter correction for fully 3D PET”. In:
Physics in Medicine and Biology 41 (1996), pp. 153–176.
[102] Thomas K. Lewellen. “Recent developments in PET detector technology”.
In: Physics in Medicine and Biology 53.17 (2008), pp. 287–300.
[103] Habib Zaidi and Christopher M. Thompson. “Quantitative analysis in
nuclear medicine imaging”. In: Journal of Nuclear Medicine 48.1 (2007),
pp. 61–67.
[104] D. W. Townsend. “Physical Principles and Technology of Clinical PET
Imaging”. In: Annals of the Academy of Medicine, Singapore 33 (2004),
pp. 133–145.
[105] D. L. Bailey et al. “Positron emission tomography: basic sciences”. In:
Springer Science & Business Media (2005).
[106] Miles N. Wernick and John N. Aarsvold. Emission Tomography: The Fundamentals
of PET and SPECT. Academic Press, 2004.
[107] Frank Herbert Attix. Introduction to Radiological Physics and Radiation
Dosimetry. John Wiley & Sons, 1986.
[108] J. H. Hubbell. “Review of photon interaction cross section data in the
medical and biological context”. In: Physics in Medicine and Biology 51.13
(2006), R245.
[109] Harold Elford Johns and John Robert Cunningham. The Physics of Radiology.
Charles C Thomas Publisher, 1983.
[110] Maziar Montazerian et al. “Radiopaque Crystalline, Non-Crystalline and
Nanostructured Bioceramics”. In: Materials 15.21 (2022), p. 7477.
181
[111] John L. Humm, Anatoly Rosenfeld, and Alberto Del Guerra. “From PET
detectors to PET scanners”. In: European Journal of Nuclear Medicine and
Molecular Imaging 30.11 (2003), pp. 1574–1597.
[112] William R. Leo. Techniques for Nuclear and Particle Physics Experiments: A
How-to Approach. Springer-Verlag, 1994.
[113] John B. Birks. The Theory and Practice of Scintillation Counting. Pergamon
Press, 1964.
[114] Charles L. Melcher. “Scintillation crystals for PET”. In: Journal of Nuclear
Medicine 41.6 (2000), pp. 1051–1055.
[115] Michael Schmand et al. “Brain PET using LSO detectors”. In: Journal of
Nuclear Medicine 39.5 (1998), 63P.
[116] Saint-Gobain Ceramics & Plastics Inc. “Saint-Gobain, LYSO Data Sheet”.
In: (2004-2020), pp. 11–20. URL: https://www.luxiumsolutions.
com/sites/default/files/2021-09/Array-Brochure.pdf.
[117] Tom K Lewellen. “Recent developments in PET detector technology”. In:
Physics in Medicine & Biology 53.17 (2008), R287.
[118] Carel WE Van Eijk. “Inorganic scintillators in medical imaging”. In:
Physics in medicine & biology 47.8 (2002), R85.
[119] Dieter Renker. “Geiger-mode avalanche photodiodes, history, properties
and problems”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
567.1 (2009), pp. 48–56.
[120] Dennis R. Schaart et al. “LaBr3:Ce and SiPMs for time-of-flight PET:
achieving 100 ps coincidence resolving time”. In: Physics in Medicine and
Biology 55.7 (2010), N179.
[121] Ron Ziegler. “The future of digital imaging”. In: Healthcare Imaging
(2010), pp. 22–25.
[122] Hamamatsu Photonics. Photomultiplier Tubes: Basics and Applications.
Tech. rep. Third Edition. Hamamatsu Photonics K.K., 2007.
[123] M.E. Casey and R. Nutt. “A new high resolution detector for positron
emission tomography”. In: European Journal of Nuclear Medicine 12 (1986),
S5–S7.
[124] ND Volkow, NA Mullani, and B Bendriem. “Positron emission tomography
instrumentation: an overview.” In: American journal of physiologic
imaging 3.3 (1988), pp. 142–153.
[125] J.P. Pansart. “Avalanche Photodiodes”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 392.1-3 (1997), pp. 349–356.
182
[126] Samuel España et al. “Avalanche Photodiodes for PET Imaging: A Review”.
In: IEEE Transactions on Nuclear Science 57.3 (2010), pp. 1230–1241.
[127] N. Dinu, M. Schmand, and S. Tavernier. “Geiger-mode Avalanche Photodiodes
for PET”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
729 (2013), pp. 3–15.
[128] V. Golovin and Z. Sadygov. “New Silicon Photomultiplier”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 518.1-2 (2004), pp. 560–564.
[129] Z. Sadygov and V. Golovin. “Silicon Photomultipliers and their Bio-
Medical Applications”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
767 (2014), pp. 252–267.
[130] Paolo Castro et al. “Performance of the latest generation of silicon photomultipliers”.
In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 787
(2015), pp. 207–210.
[131] Instite of Physics, Academia Sinica, Taiwan. URL: https://www.sinica.
edu.tw/.
[132] Mythra Varun Nemallapudi et al. “Positron emitter depth distribution
in PMMA irradiated with 130 MeV protons measured using TOF-PET
detectors”. In: IEEE Transactions on Radiation and Plasma Medical Sciences
(2021), pp. 1–1. DOI: 10.1109/TRPMS.2021.3084953.
[133] P. Andreo. “Monte Carlo techniques in medical radiation physics”. In:
Phys. Med. Biol. 36.7 (1991), pp. 861–920.
[134] M. Ljungberg. Monte Carlo Calculations in Nuclear Medicine: Applications in
Diagnostic Imaging. Bristol: IOP Publishing, 1998.
[135] H. Zaidi. Quantitative Analysis in Nuclear Medicine Imaging. New York:
Springer, 2005.
[136] B. Bai et al. “Evaluation of MAP image reconstruction with positron
range modeling for 3D PET”. In: 2005 IEEE Nuclear Science Symposium
Conference Record. Vol. 1-5. 2005, pp. 2686–2689.
[137] Y.K. Dewaraja, M. Ljungberg, and K.F. Koral. “Characterization of scatter
and penetration using Monte Carlo simulation in 131I imaging”. In: J.
Nucl. Med. 41.1 (2000), pp. 123–130.
[138] U. Bottigli et al. “Monte-Carlo Simulation and Experimental Tests on
BGO, CSF and NaI(Tl) Crystals for Positron Emission Tomography”. In:
Journal of Nuclear Medicine and Allied Sciences 29.3 (1985), pp. 221–227.
183
[139] S.E. Derenzo. “Monte-Carlo Calculations of the Detection Efficiency of
Arrays of NaI(Tl), BGO, CSF, Ge, and Plastic Detectors for 511-KeV Photons”.
In: IEEE Transactions on Nuclear Science 28.1 (1981), pp. 131–136.
[140] M. Ljungberg and S.E. Strand. “Scatter and attenuation correction in
SPECT using density maps and Monte Carlo simulated scatter functions”.
In: J. Nucl. Med. 31.9 (1990), pp. 1560–1567.
[141] G. Poludniowski et al. “An efficient Monte Carlo-based algorithm for
scatter correction in keV cone-beam CT”. In: Phys. Med. Biol. 54.12 (2009),
pp. 3847–3864.
[142] OpenGATE Collaboration. http://www.opengatecollaboration.org. Accessed
2023.
[143] GATE User Guide, Version 4.0.0. 2008.
[144] S. Agostinelli et al. “GEANT4-a simulation toolkit”. In: Nuclear Instruments
& Methods in Physics Research Section A-Accelerators Spectrometers
Detectors and Associated Equipment 506.3 (2003), pp. 250–303.
[145] Sébastien Jan et al. “GATE: a simulation toolkit for PET and SPECT”. In:
Physics in Medicine & Biology 49.19 (2004), p. 4543.
[146] GATE User Guide, Version 4.0.0. 2008.
[147] Michel Defrise, Paul E Kinahan, and Christian J Michel. “Image reconstruction
algorithms in PET”. In: Positron emission tomography: basic sciences.
Springer, 2005, pp. 60–68.
[148] TH Farquhar et al. “An investigation of filter choice for filtered backprojection
reconstruction in PET”. In: IEEE transactions on nuclear science
45.3 (1998), pp. 1133–1137.
[149] Arthur P Dempster, Nan MLaird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the royal
statistical society: series B (methodological) 39.1 (1977), pp. 1–22.
[150] Lawrence A Shepp and Yehuda Vardi. “Maximum likelihood reconstruction
for emission tomography”. In: IEEE transactions on medical imaging
1.2 (1982), pp. 113–122.
[151] Yilong Liu et al. “System response matrix calculation using symmetries
for dual-head PET scanners”. In: International journal of imaging systems
and technology 23.3 (2013), pp. 205–214.
[152] M. Rafecas et al. “Effect of noise in the probability matrix used for statistical
reconstruction of PET data”. In: IEEE Transactions on Nuclear Science
51.4 (2004), pp. 149–156.
184
[153] J. Qi et al. “High-resolution 3D Bayesian image reconstruction using the
microPET small-animal scanner”. In: Physics in Medicine and Biology 43
(1998), pp. 1001–1013.
[154] C. Kao et al. “Image reconstruction of a dual-head small-animal PET system
by usingMCcomputed system response matrix”. In: 9th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine. 2007, pp. 398–401.
[155] Adam M Alessio, Paul E Kinahan, and Thomas K Lewellen. “Modeling
and incorporation of system response functions in 3-D whole body PET”.
In: IEEE Transactions on Medical Imaging 25.7 (2006), pp. 828–837.
[156] Robert L Siddon. “Fast calculation of the exact radiological path for a
three-dimensional CT array”. In: Medical physics 12.2 (1985), pp. 252–255.
[157] Huaxia Zhao and Andrew J Reader. “Fast ray-tracing technique to calculate
line integral paths in voxel arrays”. In: 2003 IEEE Nuclear Science Symposium.
Conference Record (IEEE Cat. No. 03CH37515). Vol. 4. IEEE. 2003,
pp. 2808–2812.
[158] Jeffrey A Fessler and Alfred O Hero. “Penalized maximum-likelihood
image reconstruction using space-alternating generalized EM algorithms”.
In: IEEE Transactions on Image Processing 4.10 (1994), pp. 1417–
1429. DOI: 10.1109/83.334981.
[159] Marcel Beister, Daniel Kolditz, and Willi A Kalender. “Iterative reconstruction
methods in X-ray CT”. In: Physica Medica 28.2 (2012), pp. 94–
108. DOI: 10.1016/j.ejmp.2012.01.003.
[160] L A Shepp and Y Vardi. “Maximum likelihood reconstruction for emission
tomography”. In: IEEE Transactions on Medical Imaging 1.2 (1982),
pp. 113–122. DOI: 10.1109/TMI.1982.4307558.
[161] Richard Leahy and Xiaolan Yan. “Incorporation of anatomical MR data
for improved functional imaging with PET”. In: Information Processing in
Medical Imaging. Springer. 1991, pp. 105–120. DOI: 10.1007/978-1-
4615-3724-3_8.
[162] K J La Croix et al. “Investigation of the use of X-ray CT images for attenuation
correction in SPECT”. In: IEEE Transactions on Nuclear Science 41.6
(1994), pp. 2793–2799. DOI: 10.1109/23.340642.
[163] Michael A King, Benjamin M Tsui, and Tinsu S Pan. “Attenuation compensation
for cardiac single-photon emission computed tomographic
imaging”. In: Journal of Nuclear Cardiology 2.1 (1995), pp. 18–29. DOI: 10.
1007/BF03041821.
185
[164] H M Hudson and R S Larkin. “Accelerated image reconstruction using
ordered subsets of projection data”. In: IEEE Transactions on Medical Imaging
13.4 (1994), pp. 601–609. DOI: 10.1109/42.363108.
[165] Peter J Green. “Bayesian reconstructions from emission tomography data
using a modified EM algorithm”. In: IEEE Transactions on Medical Imaging
9.1 (1990), pp. 84–93. DOI: 10.1109/42.52985.
[166] WD Newhauser and R Zhang. “The physics of proton therapy”. In: Phys
Med Biol 60.8 (Apr. 2015).
[167] Scholz. “State of the Art and Future Prospects of Ion Beam Therapy:
Physical and Radiobiological Aspects”. In: IEEE Transactions on Radiation
and Plasma Medical Sciences 4.2 (Mar. 2020).
[168] H. Paganetti. “Range uncertainties in proton therapy and the role of
Monte Carlo simulations”. In: Phys. Med. Biol. 57 (2012), pp. 99–117.
[169] McGowan SE, Burnet NG, and Lomax AJ. “Treatment planning optimisation
in proton therapy”. In: Br J Radiol 86 (2013), pp. 2012–2088.
[170] H D Maccabee, U Madhvanath, and M R Raju. “Tissue activation studies
with alpha-particle beams”. In: Phys. Med. Biol. 14 (1969), p. 213.
[171] G.W. Bennett et al. “Beam localization via 15O activation in protonradiation
therapy”. In: Nucl. Instrum. Methods 125 (1975), pp. 333–8.
[172] Enghardt W et al. “The spatial distribution of positron-emitting nuclei
generated by relativistic light ion beams in organic matter”. In: Phys. Med.
Biol. 37 (1992).
[173] K. Parodi and W. Enghardt. “Potential application of PET in quality assurance
of proton therapy”. In: Phys. Med. Biol. 45 (2000), pp. 151–170.
[174] K. Parodi et al. “PET/CT imaging for treatment verification after proton
therapy: A study with plastic phantoms and metallic implants”. In: Med
Phys. 34.2 (2007).
[175] A. Miyatake et al. “Measurement and verification of positron emitter nuclei
generated at each treatment site by target nuclear fragment reactions
in proton therapy”. In: Med. Phys (10, volume = 37, number = 8, month =
8).
[176] Y. Shao et al. “In-beam PET imaging for on-line adaptive proton therapy:
an initial phantom study”. In: Phys. Med. Biol. 59 (2014).
[177] M. A. Piliero et al. “First results of the INSIDE in-beam PET scanner
for the on-line monitoring of particle therapy treatments”. In: JINST 11
(2016), p. C12011.
186
[178] S. Binet et al. “Construction and First Tests of an in-beam PET Demonstrator
Dedicated to the Ballistic Control of Hadrontherapy Treatments
With 65 MeV Protons”. In: IEEE Transactions on Radiation and Plasma Medical
Sciences 2.1 (Jan. 2018).
[179] H. Tashima et al. “Development of a multi-use human-scale single-ring
OpenPET system”. In: IEEE Transactions on Radiation and Plasma Medical
Sciences (Nov. 2020).
[180] P. Crespo et al. “Suppression of Random coincidences during in-beam
PET measurements at ion beam radiotherapy facilities”. In: IEEE Trans
Nucl Sci 52 (2005), p. 980.
[181] H. J. T. Buitenhuis et al. “Beam-on imaging of short-lived positron emitters
during proton therapy”. In: Phys Med Biol 62 (2017), p. 4654.
[182] J. J. R. Frausto da Silva and R. Williams. The Biological Chemistry of the
Elements. 1991. ISBN: 0198508484.
[183] X. Zhu and G. El Fakhri. “Proton Therapy Verification with PET Imaging”.
In: Theranostics 3.10 (2013).
[184] A Knopf et al. “Systematic analysis of biological and physical limitations
of proton beam range verification with offline PET/CT scans”. In: Phys.
Med. Biol. 54 (2009), pp. 4477–4495.
[185] P Dendooven et al. “Short-lived positron emitters in beam-on PET imaging
during proton therapy”. In: Phys. Med. Biol. 60 (2015), pp. 8923–8947.
[186] P Dendooven et al. “Corrigendum: Short-lived positron emitters in
beam-on PET imaging during proton therapy”. In: Phys. Med. Biol. 64
(2019), p. 129501.
[187] Harion et al. “STiC - a mixed mode silicon photomultiplier readout ASIC
for time-of-flight applications”. In: JINST 9 (2014), p. C02003.
[188] W. Enghardt et al. “Charged hadron tumour therapy monitoring by
means of PET”. In: Nuclear Instruments and Methods in Physics Research
A 525 (2004), pp. 284–288.
[189] National Institute of Standards and Technology (NIST). Stopping-Power
and Range Tables for Protons. Accessed: current year. URL: https : / /
physics.nist.gov/cgi-bin/Star/ap_table.pl.
[190] Ozoemelam et al. “Feasibility of quasi-prompt PET-based range verification
in proton therapy”. In: Phys. Med. Biol. 65 (2020), p. 245013.
[191] M. T. Studenski and Y. Xiao. “Proton therapy dosimetry using positron
emission tomography”. In: World Journal of Radiology 2.4 (Apr. 2010),
pp. 135–142.
187
[192] F. Horst et al. “Measurement of PET isotope production cross sections for
protons and carbon ions on carbon and oxygen targets for applications
in particle therapy range verification”. In: Physics in Medicine and Biology
64.16 (2019), p. 205012.
[193] A. Bongrand et al. “Use of short-lived positron emitters for in-beam and
real-time β+ range monitoring in proton therapy”. In: Physica Medica 69
(2020), pp. 248–255.
[194] R. L. Siddon. “Fast calculation of the exact radiological path for a 3-
dimensional CT array”. In: Medical Physics 12 (1985), p. 229.
[195] H. Wang et al. “Hypoxic Radioresistance: Can ROS Be the Key to Overcome
It?” In: Cancers 11 (112 2019).
[196] Hsiao-Ming Lu. “A potential method for in vivo range verification in
proton therapy treatment”. In: Physics in Medicine & Biology 53.5 (2008),
p. 1413.
[197] David A Watts et al. “A proton range telescope for quality assurance
in hadrontherapy”. In: 2009 IEEE Nuclear Science Symposium Conference
Record (NSS/MIC). IEEE. 2009, pp. 4163–4166.
[198] K Parodi. “Potential application of PET in quality assurance of proton
therapy”. In: 45.11 (Oct. 2000), pp. 151–156. DOI: 10.1088/0031-9155/
45/11/403. URL: https://doi.org/10.1088/0031-9155/45/
11/403.
[199] Chul-Hee Min et al. “Prompt gamma measurements for locating the dose
falloff region in the proton therapy”. In: Applied physics letters 89.18 (2006),
p. 183517.
[200] Harald Paganetti. “Range uncertainties in proton therapy and the role
of Monte Carlo simulations”. In: 57.11 (May 2012), pp. 99–117. DOI: 10.
1088/0031-9155/57/11/r99. URL: https://doi.org/10.1088/
0031-9155/57/11/r99.
[201] Katia Parodi et al. “Patient Study of In Vivo Verification of Beam Delivery
and Range, Using Positron Emission Tomography and Computed
Tomography Imaging After Proton Therapy”. In: International Journal of
Radiation Oncology Biology Physics 68.3 (2007), pp. 920–934. ISSN: 0360-
3016. DOI: https://doi.org/10.1016/j.ijrobp.2007.01.063.
URL: https://www.sciencedirect.com/science/article/
pii/S036030160700377X.
[202] A.M.J. Paans and J.M. Schippers. “Proton therapy in combination with
PET as monitor: a feasibility study”. In: IEEE Transactions on Nuclear Science
40.4 (1993), pp. 1041–1044. DOI: 10.1109/23.256709.
188
[203] Juan José Vaquero and Paul Kinahan. “Positron Emission Tomography:
Current Challenges and Opportunities for Technological Advances in
Clinical and Preclinical Imaging Systems”. In: Annual Review of Biomedical
Engineering 17.1 (2015). PMID: 26643024, pp. 385–414. DOI: 10.1146/
annurev- bioeng- 071114- 040723. eprint: https://doi.org/
10.1146/annurev-bioeng-071114-040723. URL: https://doi.
org/10.1146/annurev-bioeng-071114-040723.
[204] Adam Alessio, Ken Sauer, and Paul Kinahan. “Analytical reconstruction
of deconvolved Fourier rebinned PET sinograms”. In: Physics in medicine
& biology 51.1 (2005), p. 77.
[205] Shan Tong, Adam M Alessio, and Paul E Kinahan. “Image reconstruction
for PET/CT scanners: past achievements and future challenges”. In:
Imaging in medicine 2.5 (Oct. 2010), pp. 529–545. ISSN: 1755–5191. DOI:
10.2217/iim.10.49.
[206] A. Iriarte et al. “System models for PET statistical iterative reconstruction:
A review”. In: Computerized Medical Imaging and Graphics
48 (2016), pp. 30–48. ISSN: 0895–6111. DOI: https : / / doi . org /
10 . 1016 / j . compmedimag . 2015 . 12 . 003. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0895611115001901.
[207] H Paganetti and G El Fakhri. “Monitoring proton therapy with PET”. In:
The British journal of radiology 88.1051 (2015), pp. 2015–2173.
[208] W. Enghardt et al. “Dose quantification from in-beam positron emission
tomography”. In: Radiotherapy and Oncology 73 (2004). Carbon-Ion Theraphy,
S96–S98. ISSN: 0167–8140. DOI: https://doi.org/10.1016/
S0167-8140(04)80024-0. URL: https://www.sciencedirect.
com/science/article/pii/S0167814004800240.
[209] Fine Fiedler et al. “On the effectiveness of ion range determination from
in-beam PET data”. In: Physics in Medicine & Biology 55.7 (2010), p. 1989.
[210] E Fourkal, J Fan, and I Veltchev. “Absolute dose reconstruction in proton
therapy using PET imaging modality: feasibility study”. In: 54.11 (May
2009), pp. 217–228. DOI: 10.1088/0031- 9155/54/11/n02. URL:
https://doi.org/10.1088/0031-9155/54/11/n02.
[211] Katia Parodi and Thomas Bortfeld. “A filtering approach based on Gaussian–
powerlaw convolutions for local PET verification of proton radiotherapy”.
In: 51.8 (Mar. 2006), pp. 1991–2009. DOI: 10 . 1088 / 0031 -
9155/51/8/003. URL: https://doi.org/10.1088/0031-9155/
51/8/003.
189
[212] F Attanasi et al. “Extension and validation of an analytical model for invivo
PET verification of proton therapy: a phantom and clinical study”.
In: 56.16 (July 2011), pp. 5079–5098. DOI: 10.1088/0031-9155/56/
16/001. URL: https://doi.org/10.1088/0031-9155/56/16/
001.
[213] Steffen Remmele et al. “A deconvolution approach for PET-based dose
reconstruction in proton radiotherapy”. In: 56.23 (Nov. 2011), pp. 7601–
7619. DOI: 10.1088/0031-9155/56/23/017. URL: https://doi.
org/10.1088/0031-9155/56/23/017.
[214] Takamitsu Masuda et al. “MLEM algorithm for dose estimation using
PET in proton therapy”. In: 64.17 (Sept. 2019), pp. 175–200. DOI: 10 .
1088/1361- 6560/ab3276. URL: https://doi.org/10.1088/
1361-6560/ab3276.
[215] Chuang Liu et al. “Range and dose verification in proton therapy using
proton-induced positron emitters and recurrent neural networks
(RNNs)”. In: 64.17 (Sept. 2019). DOI: 10.1088/1361-6560/ab3564.
URL: https://doi.org/10.1088/1361-6560/ab3564.
[216] Zongsheng Hu et al. “A machine learning framework with anatomical
prior for online dose verification using positron emitters and PET in proton
therapy”. In: 65.18 (Sept. 2020), p. 185003. DOI: 10.1088/1361-
6560/ab9707. URL: https://doi.org/10.1088/1361- 6560/
ab9707.
[217] Xiaoke Zhang et al. “Dose calculation in proton therapy using a discovery
cross-domain generative adversarial network (DiscoGAN)”. In: Medical
Physics 48.5 (2021), pp. 2646–2660.
[218] Ida Häggström et al. “DeepPET: A deep encoder–decoder network for
directly solving the PET image reconstruction inverse problem”. In:
Medical Image Analysis 54 (2019), pp. 253–262. ISSN: 1361-8415. DOI:
https : / / doi . org / 10 . 1016 / j . media . 2019 . 03 . 013. URL:
https://www.sciencedirect.com/science/article/pii/
S1361841518305838.
[219] Olaf Ronneberger and Thomas Fischer Philippand Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015. Ed. by
Nassir Navab et al. Springer International Publishing, 2015, pp. 234–241.
[220] Zhong Su et al. “Evaluations of a flat-panel based compact daily quality
assurance device for proton pencil beam scanning (PBS) system”. In:
Physica Medica 80 (2020), pp. 243–250.
190
[221] Ikechi Ozoemelam et al. “Feasibility of quasi-prompt PET-based range
verification in proton therapy”. In: Physics in Medicine & Biology 65.24
(2020), p. 245013.
[222] U Oelfke, G K Y Lam, and M S Atkins. “Proton dose monitoring with
PET: quantitative studies in Lucite.” In: 41.1 (Jan. 1996), pp. 177–196. DOI:
10.1088/0031-9155/41/1/013. URL: https://doi.org/10.
1088/0031-9155/41/1/013.
[223] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial
Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017), pp. 5967–5976.
[224] S Jan et al. “GATE V6: a major enhancement of the GATE simulation platform
enabling modelling of CT and radiotherapy”. In: 56.4 (Jan. 2011),
pp. 881–901. DOI: 10.1088/0031- 9155/56/4/001. URL: https:
//doi.org/10.1088/0031-9155/56/4/001.
[225] L Grevillot et al. “A Monte Carlo pencil beam scanning model for proton
treatment plan simulation using GATE/GEANT4”. In: 56.16 (July 2011),
pp. 5203–5219. DOI: 10.1088/0031-9155/56/16/008. URL: https:
//doi.org/10.1088/0031-9155/56/16/008.
[226] Wilfried Schneider, Thomas Bortfeld, and Wolfgang Schlegel. “Correlation
between CT numbers and tissue parameters needed for Monte Carlo
simulations of clinical dose distributions”. In: 45.2 (Jan. 2000), pp. 459–
478. DOI: 10.1088/0031-9155/45/2/314. URL: https://doi.
org/10.1088/0031-9155/45/2/314.
[227] Carla Winterhalter et al. “Evaluation of GATE-RTion (GATE/Geant4)
Monte Carlo simulation settings for proton pencil beam scanning quality
assurance”. In: Medical Physics 47.11 (2020), pp. 5817–5828.
[228] Thomas Bortfeld and Wolfgang Schlegel. “An analytical approximation
of depth-dose distributions for therapeutic proton beams”. In: Physics in
Medicine & Biology 41.8 (1996), p. 1331.
[229] David Jette andWeimin Chen. “Creating a spread-out Bragg peak in proton
beams”. In: Physics in Medicine & Biology 56.11 (2011), N131.
[230] Asako Kanezaki et al. “Deep learning for multimodal data fusion”. In:
Multimodal Scene Understanding. Elsevier, 2019, pp. 20–22.
[231] Subhadip Mukherjee et al. “End-to-end reconstruction meets data-driven
regularization for inverse problems”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates,
Inc., 2021, pp. 21413–21425. URL: https://proceedings.neurips.
cc/paper/2021/file/b2df0a0d4116c55f81fd5aa1ef876510-
Paper.pdf.
191
[232] Espagna S. and Paganetti H. “The impact of uncertainties in the CT conversion
algorithm when predicting proton beam ranges in patients from
dose and PET-activity distributions”. In: Physics in Medicine & Biology 55
(2010), pp. 7557–7571.DOI: 10.1088/0031-9155/55/24/011.
指導教授 李世昌(Lee Shih Chang) 審核日期 2024-4-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明