博碩士論文 108226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.15.139.250
姓名 王翊蓁(Yi-Zhen Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合漫反射光譜及蒙地卡羅分析建立瘀傷時間模型
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-12以後開放)
摘要(中) 光學檢測技術因為具有不破壞生物體本身的優點,普遍被應用在生醫研究上,近年來隨著健康意識逐漸抬頭,非侵入式技術漸漸應用於人體的生理指數分析上。
 漫反射光譜(DRS, diffuse reflectance spectroscopy)是光學檢測技術在人體上最常被使用的技術,藉由光譜表現、反射率與濃度的分析可獲得多項無法用肉眼觀察到的皮下組織數據,例如帶氧血紅素、不帶氧血紅素、膽紅素等等數值,這些數據有助於了解受試者當下的瘀傷程度,以及瘀傷的癒合及形成時間。
 本研究以漫反射光譜量測系統搭配主成分分析法,透過類神經網路獲得皮下組織含量變化,進而進行生理數值分析。透過收集有瘀傷的受試者,將受傷區域採集漫反射光譜及二維影像,透過主成分分析法找出漫反射光譜中三大主要成分,再以擬合方式取得投影量對應帶氧血紅素、不帶氧血紅素與膽紅素濃度三者的關係,使用台大宋孔彬老師實驗室提供的類神經系統擬合出的濃度資訊可應用於受試者的生理數值分析上,建立瘀傷形成及癒合的時間模型,而後擴大受試者的基底可以將時間模型更完善,並應用在生醫研究上。
摘要(英) Optical detection technology is widely used in biomedical research because it has the advantage of not damaging the organism itself. In recent years, with the gradual rise of health awareness, non-invasive technology has gradually been applied to the analysis of physiological indexes of the human body.
Diffuse reflectance spectroscopy (DRS) is the most commonly used optical detection technology on the human body. Through the analysis of spectral performance, reflectance and concentration, a number of subcutaneous tissue data that cannot be observed with the naked eye can be obtained, such as Oxygenated Hemoglobin, Deoxygenated Hemoglobin, bilirubin, biliverdin etc. These data help to understand the subject′s current degree of bruises, as well as the healing and formation time of the bruises.
This study uses a diffuse reflectance spectroscopy measurement system coupled with principal component analysis to obtain changes in subcutaneous tissue content through a neural network, and then conducts physiological numerical analysis. By collecting subjects with bruises, the diffuse reflectance spectrum and two-dimensional images of the injured area were collected, and the four main components in the diffuse reflectance spectrum were found through principal component analysis, and then the projection volume corresponding bands were obtained by fitting. The relationship between oxygenated hemoglobin, non-oxygenated hemoglobin and bilirubin concentration. The concentration information fitted using the neural system provided by Professor Song Kong Bin′s laboratory at National Taiwan University can be applied to the analysis of the physiological values of the subjects to establish blood stasis. Time model of injury formation and healing, and then expanding the basis of subjects can improve the time model and apply it to biomedical research.
關鍵字(中) ★ 漫反射光譜
★ 瘀傷
★ 蒙地卡羅
★ 主成分分析法
關鍵字(英) ★ Diffuse reflectance spectroscopy
★ Bruise skin
★ Monte Carlo
★ Principal components analysis
論文目次 中文摘要.................................................................................................................................................. I
Abstract.................................................................................................................................................. II
目錄........................................................................................................................................................ III
圖目錄.................................................................................................................................................... IV
表目錄.................................................................................................................................................... VI
第一章 緒論...................................................................................................................................... 1
1-1 研究動機與目的...................................................................................................................... 1
1-2 文獻回顧與探討...................................................................................................................... 1
1-3 論文架構.................................................................................................................................. 5
第二章 實驗原理與分析方法.......................................................................................................... 6
2-1 漫反射的光學特性與應用...................................................................................................... 6
2-2 人體皮膚的組成與漫反射光譜.............................................................................................. 9
2-3 主成分分析之原理................................................................................................................ 14
2-4 蒙地卡羅與類神經網路之原理............................................................................................ 16
第三章 實驗方法............................................................................................................................ 19
3-1 二維影像的取得.................................................................................................................... 19
3-2 漫反射光譜量測系統............................................................................................................ 20
3-3 樣本處理與採樣方式............................................................................................................ 24
第四章 實驗結果............................................................................................................................ 26
4-1 二維影像色度分析................................................................................................................ 26
4-2 仿體光譜的校正與光纖選擇................................................................................................ 30
4-3 漫反射光譜與主成分分析結果............................................................................................ 34
4-4 主成分分析應用於樣本之生理指數分析............................................................................ 42
4-4-1 主成分與擬合濃度之關聯性.......................................................................................... 42
4-4-2 瘀傷顏色變化與主成分變化之差異 .............................................................................. 48
第五章 結論.................................................................................................................................... 52
參考文獻............................................................................................................................................... 53
參考文獻 1. Capper C. The language of forensic medicine: The morning of some terms employed. Med. Sci. Law, 41(3), pp. 256-259, 2001.
2. Vanezis P. Interpreting bruises at necropsy. J. Clin, Pathol., 54(5), pp. 348-355, 2001.
3. Langlois NE and Gresham GA. The ageing of bruises: a review and study of the colour changes with time. Forensic Sci. Int., 50(2), pp. 227–238, 1991.
4. Schwart AJ and Ricci LR. How accurately can bruises be aged in abused children? Literature review and synthesis. Pediatrics, 97(2), pp. 254–257, 1996.
5. Stephenson T and Bialas Y. Estimation of the age of bruising. Arch. Dis. Child., 74(1), pp.53–55, 1996.
6. Altemeier WA 3rd. A pediatrician’s view. Interpreting bruises in children. Pediatr. Ann., 30(9), pp. 517–518, 520, 2001.
7. Maguire S, Mann MK, Sibert J, and Kemp A. Can you age bruises accurately in children? A systematic review. Arch. Dis. Child., 90(2), pp. 187–189, 2005.
8. Svaasand LO, Norvang LT, Fiskerstrand EJ, Stopps EKS, Berns MW, and Nelson JS. Tissue parameters determining the visual appearance of normal skin and port-wine stains. Lasers Med. Sci., 10(1), pp. 55–65, 1995.
9. Bauer D, Grebe R, and Ehrlacher A. A three-layer continuous model of porous media to describe the first phase of skin irritation. J. Theor. Biol., 232(3), pp. 347–362, 2005.
10. Bauer D, Grebe R, and Ehrlacher A. First phase microcirculatory reaction to mechanical skin irritation: a three layer model of a compliant vascular tree. J. Theor. Biol., 232(2), pp. 249–260, 2005.
11. Pimstone NR, Tenhunen R, Seitz PT, Marver HS, and Schmid R. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J. Exp. Med., 133(6), pp. 1264–1281, 1971.
12. Maines MD and Cohn J. Bile pigment formation by skin heme oxygenase: studies on the response of the enzyme to heme compounds and tissue injury. J. Exp. Med., 145(4), pp.
1054–1059, 1977.
13. Virchow, R. Die pathologischen Pigmente. Virchows Arch. Pathol. Anat., 1, pp. 379–486, 1847.
14. Hughes VK, Ellis PS, and Langlois NE. The perception of yellow in bruises. J. Clin. Forensic Med., 11(5), pp. 257–259, 2004.
15. Randeberg LL, Haugen OA, Haaverstad R, and Svaasand LO. A novel approach to age determination of traumatic injuries by reflectance spectroscopy. Lasers Surg. Med., 38(4),
pp. 277–289, 2006.
16. Svaasand LO, Fiskerstrand EJ, Kopstad G, Norvang LT, Svaasand EK, Nelson JA, and Berns MW. Therapeutic response during pulsed laser treatment of port-wine stains:
Dependence on vessel diameter and depth in dermis. Lasers Med. Sci., 10(4), pp.235–243, 1995.
17. John H. Parrish, Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. ACADEMIA, 1981
18. Spott T, Svaasand LO, Anderson RE, Schmedling PF. Application of optical diffusion theory to transcutaneous bilirubinometry. SPIE Europto Series, 3195, pp. 234– 245, 1997.
19. Randeberg LL, Roll EB, Norvang Nilsen LT, Christensen T, and Svaasand LO. In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr., 94(1), pp. 65–71, 2005.
20. Spott T and Svaasand LO, Collimated light sources in the diffusion approximation. Appl. Opt., 39(34), pp. 6453–6465, 2000.
21. Sandby Møller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits.  Acta Derm Venerol, 83, pp. 410–413, 2003.
22. J.B. Dawson, D.J. Barker, D.J. Ellis, E. Grassam, J.A. Cotterill, G.W. Fisher, J.W. Feather, A theoretical and experimental study of light absorption and scattering by in vivo skin. National Library of Medicine, 25(4), pp. 695-709, 1980.
23. J.M. Kainerstorfer, M. Ehler,F. Amyot, M. Hassan, S.G. Demos, V. Chernomordik, C.K. Hitzenberger, A.H. Gandjbakhche, and J.D. Riley. Principal component model of
multispectral data for near real-time skin chromophore mapping. J. Biomed. Opt., 15(4), 046007, 2010.
24. Krishnamurty Muralidhar. Monte Carlo Simulation. Encyclopedia of Information Systems, pp. 193-201, 2003.
25. Igor Meglinski. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light. Quantum Electronics., 31(12), pp. 1101-1107, 2001.
26. Fan-Hua Ko. New inverse fitting model and investigation in-vivo diffuse reflectance spectra by Monte Carlo: oral mucosa. NTU Theses and Dissertations Repository, 2016.
27. Chiao-Yi Wang. Improved Inverse Monte Carlo Fitting of In-vivo Diffuse Reflectance Spectra : Human Skin Tissue. NTU Theses and Dissertations Repository, 2018.
28. S.M. Juds, Photoelectric Sensors and Controls: Selection and Application. Marcel Dekker, New York, 1988.
29. P. Avci, A. Gupta, M. Sadasivam, D. Vecchio, Z. Pam, N. Pam, M.R. Hamblin, Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in
cutaneous medicine and surgery, 32(1), NIH Public Access, 2013.
30. K. Fuwa and B.L. Valle, The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert law, Anal. Chem., 35(8), pp. 942-946, 1963.
31. K.S. Bersha, Spectral imaging and analyzing human skin. Master Thesis Report, and defended at the University of Eastern Finland, 2010.
32. OpenStax, Anatomy and physiology, OpenStax, http://cnx.org/contents/14fb4ad7-39al4eee-ab6e-3ef2482e3e22@8.24, 2013.
https://assets.openstax.org/oscms-prodcms/media/documents/AnatomyandPhysiologyOP.pdf
33. https://training.seer.cancer.gov/melanoma/anatomy/layers.html
34. T. Sarna and H.A. Swartz(Eds.), The Pigmentary System: Physiology and Pathophysiology. Blackwell, 2006.
35. H. Branno, Skin anatomy: The layers of skin and their functions. Details About the Body’s Largest Organ; Available from: https://www.verywell.com/the-biology-of-hair1068785, May 07, 2017.
https://www.webmd.com/skin-problems-and-treatments/picture-of-the-skin
36. Yi-Sheong Chou, Studies of The Optical Characteristics of Skin Tissue Using Monte Carlo Simulation. CNT-CYCU Theses. (1999).
37. https://heho.com.tw/archives/47847
38. L. Weaver, A. Hamoud, D. E. Stec and T. D. Hinds Jr., Biliverdin reductase and bilirubin in hepatic disease. American physiological society, 2018.
https://journals.physiology.org/doi/full/10.1152/ajpgi.00026.2018
39. S. Prahl, Optical absorption of hemoglobin. Oregon Medical Laser Center,
https://omlc.org/spectra/hemoglobin/index.html, 1999.
40. G. Zonios and A. Dimou, Modeling diffuse reflectance from semi-infinite turbid media:application to the study of skin optical properties. Opt. Express, 14(19), pp. 8661-8674, 2006.
41. S.L. Jacques, Skin optics summary. Oregon Medical Laser Center News, https://omlc.org/news/jan98/skinoptics.html, 1998.
42. F.P. Bolin, et al., Refractive index of some mammalian tissues using a fiber optic cladding method. Applied Optics, 28(12), pp. 2297-2303, 1989.
43. W.F. Cheong, S.A. Prahl, and A.J. Welch, A review of the optical properties of biological tissue. IEEE Journal of Quantum Electronics, 26(12), pp. 2166-2185, 1900.
44. F.A. Duck, Physical properties of tissue: A comprehensive reference book. Academic Press, 1990.
45. Jianan Qu, Calum MacAulay, Stephen Lam, and Branko Palcic, Optical properties of normal and carcinomatous bronchial tissue. Applied Optics, 33(31), pp.7397-7405, 1994.
46. Jacques, S.L., Optical properties of biological tissues: a review. Physics in Medicine & Biology, 58(11), pp. R37, 2013.
47. Nunez, A.S., A physical model of human skin and its application for search and rescue. AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING, 2009.
48. Buiteveld, H., J. Hakvoort, and M. Donze. Optical properties of pure water. in Ocean Optics XII. International Society for Optics and Photonics, 1994.
49. G. Zonics, et al., Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo, Applied Optics, 38(31), pp. 6628-6637, 1999.
50. W.J. Wiscombe, Mie scattering calculations: Advances in technique and fast, vectorspeed computer codes. National Center for Atmospheric Research, 1979.
51. Bashkatov, A.N., E.A. Genina, and V.V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: a review. Journal of Innovative Optical Health Sciences, 4(01), pp. 9-38, 2011.
52. https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-
%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-
%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90-principlecomponent-analysis-pca-58229cd26e71
53. Fredriksson, I., M. Larsson, and T. Strömberg, Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy. Journal of biomedical
optics, 17(4): p. 047004, 2012.
54. Palmer, G.M. and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Applied
optics, 45(5): p. 1062-1071, 2006.
55. Sung, K.-B., et al., Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra. Journal of biomedical optics, 19(7): p. 077002, 2014.
56. Sharma, M., et al., Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy. Biomedical
optics express, 5(1): p. 40-53, 2014.
57. 王進德,類神經網路與模糊控制理論入門與應用,初版,全華科技,ISBN 957-21-0695-3,9 月,1994.
58. Jhong-Yi Lin, Study on Tolerance Allocation using Monte-Carlo simulation and Neural Network. NDLTD, 2020.
59. https://www.carousell.com.hk/p/nanguang-%E5%8D%97%E5%86%A0-cn-r160-led-
%E5%8F%AF%E5%8B%95%E5%BC%8F%E7%92%B0%E5%9E%8B%E7%87%88-
216063016/
60. https://www.easyps.com.tw/mobile/product.php?id=9191
61. https://mmmfoy.pixnet.net/blog/post/288287455
62. Lise Lyngsnes Randeberg, Bjørn Skallerud, Neil E.I. Langlois, Olav Anton Haugen & Lars Othar Svaasand, The Optics of Brusing. Optical-Thermal Response of
Laser-Irradiated Tissue, 2nd ed., DOI 10.1007/978-90-481-8831-4_22, 2010
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明