博碩士論文 110222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.117.11.16
姓名 楊友東(You-Dong-Yang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 由電漿輔助化學氣相沉積法與氯化物前驅物製備之鍺與矽薄膜應用於太陽能電池技術之發展
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 這份研究主要是透過電漿輔助化學氣沉積法以及氯化物前驅物;四氯化鍺、四氯化矽,獨立發展製備鍺/矽/玻璃基板材料的堆疊型太陽能電池的前級與後級,並期望在未來發展將兩層薄膜整合的技術。
選用的玻璃基板材料種類分別有無鹼玻璃、石英玻璃、氧化銦錫層導電玻璃,並各自觀察到在升降溫過程中,薄膜受到應力影響而產生皺摺、龜裂進而導致剝落的形變。從450°C降至室溫的過程中,鍺/石英玻璃會產生龜裂的形變,發生的臨界厚度約為1 μm,而鍺/氧化銦錫層導電玻璃會產生皺摺形變,發生在薄膜較薄(小於200 nm)或鍍膜溫度較低的時候,只有鍺/無鹼玻璃在厚度2 μm內都沒有觀察到任何的形變產生。
從鍺沉積在三種基板上的XRD圖譜來看,觀察到鍺在(220)晶面有較為強烈的訊號。從拉曼光譜分析,隨著鍺薄膜厚度增加到1μm,薄膜累積的拉伸應變(Tensile strain)會自發性釋放,從295 cm-1回歸到接近300.9 cm-1的位置。
矽薄膜在三種玻璃上同樣也有應變導致的形變問題,沉積結束後的降溫過程中,矽薄膜/無鹼玻璃會產生皺褶的形變而剝落,發生的臨界厚度約為薄膜厚度小於200 nm的時候,此外,在熱退火時由室溫升溫至450°C,矽薄膜/石英玻璃會產生皺摺形變而剝落,而矽薄膜/氧化銦錫玻璃上至少在1 μm內都沒有觀察到任何的形變產生。
此外還發展了原味摻雜鎵原子的技術,透過使用三氯化鎵前驅物,在鍺薄膜沉積的同時進行摻雜,量測到最低的電阻率可達0.001Ω·cm。
本研究中發展在玻璃基板上的薄膜型太陽能電池,還未能夠觀察到可信的轉換效率,僅有接近儀器誤差值的10-6 %。用四點探針量測沉積完尚未佈植的純鍺薄膜的電阻率過低,僅有0.12 Ω·cm,推測在鍍膜過程中有意外的雜質摻入。暫時轉往發展鍺/N型矽基板的太陽能電池時,成功的得到6.2%的轉換效率,短路電流值為54.2 mA/cm2、開路電壓為310 mV,填充因子為38.2%。
摘要(英) This study primarily employs plasma-enhanced chemical vapor deposition (PECVD) and chloride precursors (germanium tetrachloride and silicon tetrachloride) to independently develop the front and rear layers of germanium/silicon/glass-based tandem solar cells. The goal is to integrate these two thin films in the future.

The types of glass substrates used include alkali-free glass, quartz glass, and indium tin oxide (ITO) conductive glass. During the heating and cooling process, stress-induced wrinkles, cracks, and subsequent peeling deformations were observed in the films. When cooling from 450°C to room temperature, the germanium/quartz glass exhibited cracking deformation at a critical thickness of about 1 μm. The germanium/ITO conductive glass showed wrinkling deformation when the film was thinner (less than 200 nm) or when the deposition temperature was lower. No deformation was observed in the germanium/alkali-free glass for thicknesses up to 2 μm.

XRD patterns of germanium deposited on the three substrates showed a strong signal on the (220) crystal plane. Raman spectroscopy analysis indicated that as the thickness of the germanium film increased to 1 μm, the accumulated tensile strain in the film spontaneously released, shifting from 295 cm-1 to nearly 300.9 cm-1.

Silicon films on the three types of glass also exhibited strain-induced deformation issues. During the cooling process after deposition, silicon films on alkali-free glass showed wrinkling deformation and peeling at a critical thickness of less than 200 nm. Additionally, during thermal annealing from room temperature to 450°C, silicon films on quartz glass showed wrinkling deformation and peeling, while no deformation was observed for silicon films on ITO glass up to a thickness of 1 μm.

Furthermore, a technique for in-situ gallium doping was developed. Using gallium trichloride as a precursor, doping was carried out simultaneously during the deposition of the germanium film, achieving a minimum resistivity of 0.001 Ω·cm.

In this study, thin-film solar cells developed on glass substrates did not yet show reliable conversion efficiency, only achieving a value close to the instrument′s error margin of 10^-6%. The resistivity of the pure germanium film measured with a four-point probe was as low as 0.12 Ω·cm, suggesting accidental impurity incorporation during the deposition process. Temporarily shifting focus to developing germanium/N-type silicon substrate solar cells resulted in a conversion efficiency of 6.2%, with a short-circuit current density of 54.2 mA/cm², an open-circuit voltage of 310 mV, and a fill factor of 38.2%.
關鍵字(中) ★ 電漿輔助化學氣相沉積
★ 四氯化鍺
★ 四氯化矽
★ 玻璃基板
關鍵字(英) ★ plasma-enhanced chemical vapor deposition
★ germanium tetrachloride
★ silicon tetrachloride
★ glass substrate
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 鍺薄膜太陽能電池回顧 2
1-3 矽薄膜太陽能電池回顧 3
1-4 鎵原子原位摻雜回顧 4
1-5 研究目標 5
第二章 實驗方法 6
2-1 薄膜沉積實驗儀器架設 6
2-1-1 PECVD平台與真空管路系統 6
2-1-2 四向閥與起泡器 7
2-1-3 前驅物 8
2-1-4 基板材料 8
2-2 薄膜品質檢測儀器 9
2-2-1 光學顯微鏡 9
2-2-2 掃描式電子顯微鏡(SEM&EDX) 9
2-2-3 拉曼光譜 10
2-2-4 X光繞射儀 10
2-2-5 原子力顯微鏡AFM 10
2-2-6 四點探針量測法 11
2-3 薄膜沉積製程細節 11
2-3-1 玻璃基板溫度校正 11
2-3-2 玻璃基板鍍膜飽和溫度 12
2-3-3 四氯化矽分壓計算方法 12
2-4 黃光室元件製程儀器 13
2-4-1 高溫退火爐(Rapid thermal annealing) 13
2-4-2 光罩曝光對準機 14
2-4-3 蒸鍍機 14
2-5 太陽能電池量測儀器 14
2-5-1 J-V曲線 14
2-5-2 太陽光模擬器 15
2-5-3 量子效率量測 15
2-6 太陽能電池元件設計 16
2-6-1 厚度考量 16
2-6-2 能帶設計 17
2-6-3 表面鈍化 18
2-7 實驗操作手法 19
2-7-1 基板清潔 19
2-7-2 離子佈植樣品準備 19
2-7-3 光阻塗佈製程 20
2-7-4 元件製作 21
2-7-5 離子佈植 22
2-7-6 鍺蝕刻結果 23
2-7-7 佈植阻擋層的蝕刻間接造成矽薄膜剝落 25
2-8 鍺沉積於矽基板基準參數(Benchmark) 25
第三章 實驗結果與討論 28
3-1 鍺薄膜沉積於玻璃基板上 28
3-1-1 玻璃基板與薄膜的相容性 28
3-1-2 鍺與玻璃基板材料的熱膨脹係數差異 31
3-1-3 從拉曼峰值位置觀察薄膜內部應變 38
3-1-4 調變系統參數與鍺薄膜鍍率的關係 39
3-1-5 鍺薄膜的品質 42
3-2 矽薄膜沉積 48
3-2-1 矽薄膜與玻璃基板的熱膨脹相容性 48
3-2-2 調變系統參數與矽薄膜鍍率的關係 53
3-2-3 矽薄膜的品質 54
3-2-4 矽沉積時同時存在沉積反應與蝕刻反應的證據 57
3-2-5 反應係數:氣體分壓對鍍率的影響 60
3-3 鍺薄膜沉積於矽基板 61
3-3-1 有無Ge緩衝層的結晶品質比較 61
3-3-2 三氯化鎵原位參雜(in-situ doping) 62
3-4 太陽能電池量測 68
3-4-1 鍺薄膜/無鹼玻璃基板太陽能電池的實驗進展 68
3-4-2 鍺/N型微量摻雜矽基板太陽能電池的實驗進展 69
3-4-3 所有實驗元件統整表 71
第四章 結論 73
4-1 結論 73
4-2 未來展望 74
參考文獻 75

表目錄
表 1.1 以鍺薄膜作為主要吸收層的太陽能電池文獻回顧 3
表 1.2以矽薄膜為主要吸收層的太陽能電池文獻回顧 4
表 2.1離子佈植使用參數(考量鈦/鍺接觸面) 18
表 2.2佈植參數設定 23
表 2.3 鍺薄膜/矽基板蝕刻速率 24
表 3.1鍺/氧化銦錫導電玻璃調變系統參數與降溫時應力導致的皺褶形變關係 30
表 3.2各式材料的在室溫下的熱膨脹係數 31
表 3.3 鍺薄膜在各式玻璃基板上成長遭遇的應變問題 33
表 3.4鍺與與基板間的熱膨脹係數差異產生之應變與伸長量計算 34
表 3.5 推測薄膜因熱膨脹不匹配而在降溫時產生形變的形式與發生條件 35
表 3.6 鍺沉積在二氧化矽調變系統參數應變結果註: 36
表 3.7鍺/無鹼玻璃(墊重摻雜Si光吸收片) 37
表 3.8為鍺成長於無鹼玻璃基板的鍍率對於各控制參數之關係圖。 40
表 3.9 鍺薄膜/氧化銦錫玻璃表面形貌隨厚度變化關係 44
表 3.10 鍺薄膜/無鹼玻璃表面形貌與沉積溫度關係 45
表 3.11鍺薄膜/無鹼玻璃表面形貌隨厚度變化關係 45
表 3.12 矽薄膜在各式玻璃基板上成長遭遇的應變問題 49
表 3.13 矽與基板間的熱膨脹係數差異產生之應變計算 49
表 3.14矽/石英玻璃基板(有墊重摻雜Si吸光片) 50
表 3.15矽/無鹼玻璃基板(有墊重摻雜Si吸光片) 51
表 3.16矽/氧化銦錫基板(有墊重摻雜Si吸光片) 52
表 3.17矽隨著溫度調變參數 54
表 3.18矽的表面形貌隨著基板溫度變化 54
表 3.19 矽的表面形貌隨著薄膜厚度變化 55
表 3.20 矽薄膜被前驅物蝕刻與溫度的關係 59
表 3.21 矽鍍率與分壓關係實驗控制參數實驗數據 61
表 3.22鎵摻雜PECVD基板溫度變化實驗系統參數 63
表 3.23鎵摻雜PECVD流量比變化實驗系統參數 63
表 3.24鎵摻雜PECVD前驅物溫度變化實驗系統參數 64
表 3.25目前測試過的鍺/矽太陽能電池異質材料堆疊架構量測結果 71

圖目錄
圖 1.1堆疊型太陽能電池示意圖[4] 2
圖 1.2矽、鍺材料的吸收係數光譜[5] 2
圖 1.3太陽光光譜 2
圖 1.4矽/鍺元件量子效率示意圖[6] 2
圖 1.5 SIMS磷原子摻雜分布圖(a)矽鍺薄膜離子佈植(b)矽鍺原位摻雜[20] (c)旋轉塗佈並進行熱擴散[21] 5
圖 2.1 PECVD腔體管路架設圖[22] 6
圖 2.2左:RF電源供應器、匹配器 右:MFC質量流量控制器讀表 7
圖 2.3左:加熱帶與四向閥、起泡器 中:前驅物藥瓶 右:MFC流量控制器與加熱板 8
圖 2.4 實驗所使用的基板 8
圖 2.5 所使用的光學顯微鏡OM 9
圖 2.6左:Keithley 2450、四點探針 右:J-V曲線量測探針 11
圖 2.7鍺/玻璃基板瞬時鍍率飽和厚度 12
圖 2.8玻璃基板溫度對應鹵素燈電壓 12
圖 2.9左:高溫快速退火爐、中:光罩對準曝光機 右:蒸鍍機 14
圖 2.10 太陽光模擬器 15
圖 2.11 近紅外波段光譜量測儀 16
圖 2.12由PC1D模擬鍺太陽能電池不同厚度的開路電壓短路電流值[10] 17
圖 2.13以離子佈植退火結果的預估濃度計算材料費米能階所繪製之能帶圖 18
圖 2.14元件製程使用的光罩圖形 21
圖 2.15透過蝕刻法製作檯面示意圖 22
圖 2.16透過二氧化矽薄膜舉離製作檯面示意圖 22
圖 2.17 元件成型流程圖 22
圖 2.18 SRIM所模擬之離子佈植深度、濃度結果 23
圖 2.19 鍺薄膜/矽基板蝕刻表面形貌變化SEM圖 24
圖 2.20鍺薄膜/無鹼玻璃蝕刻過程表面形貌變化圖 24
圖 2.21 矽/氧化銦錫導電玻璃浸泡在BOE去除二氧化矽阻擋層同時蝕刻到氧化銦錫導致薄膜剝落 25
圖 2.22由基準參數沉積之鍺薄膜量測(a)拉曼光譜(b)XRD繞射圖譜 26
圖 2.23 鍺薄膜基準參數結果表面形貌SEM圖 27
圖 2.24鍺薄膜基準參數結果XRD圖 27
圖 3.1 為表 3.1中之實驗樣品對照圖(OM影像或照片) 31
圖 3.2矽與鍺在0~600°C的熱膨脹係數變化[32] 31
圖 3.3鍺薄膜在(a)無鹼玻璃(b)ITO玻璃(C)SiO2玻璃基板上遭遇的應變 33
圖 3.4 為表 3.6中之實驗樣品對照圖(OM影像或照片) 36
圖 3.5鍺/石英玻璃基板(溫度不足時)產生氫氣嚴重起泡示意圖 37
圖 3.6為表 3.7中之實驗樣品對照圖(照片) 38
圖 3.7鍺薄膜/玻璃基板 厚度(a)150 nm (b)1.1 μm拉曼光譜 39
圖 3.8鍺薄膜在玻璃鍍率對各參數(a)基板溫度(b)氣體流量(c)電漿功率(d)成長時間的關係圖 42
圖 3.9鍺薄膜/氧化銦錫玻璃表面形貌隨厚度變化關係圖 44
圖 3.10 鍺薄膜/無鹼玻璃表面形貌與沉積溫度關係圖 45
圖 3.11鍺薄膜/無鹼玻璃SEM表面形貌隨厚度變化關係圖 45
圖 3.12鍺薄膜/無鹼玻璃表面形貌隨厚度變化關係圖 45
圖 3.13鍺/無鹼玻璃厚度與表面粗糙度AFM量化圖 46
圖 3.14 鍺薄膜/無鹼玻璃(a)改變厚度(b)改變基板溫度的拉曼光譜 46
圖 3.15鍺薄膜/無鹼玻璃XRD繞射圖譜 47
圖 3.16鍺薄膜/ITO玻璃XRD繞射圖譜 47
圖 3.17鍺薄膜/石英玻璃XRD繞射圖譜 47
圖 3.18矽薄膜在各式玻璃基板上遭遇的應變外觀OM圖 49
圖 3.19矽薄膜在各式玻璃基板上遭遇的應變外觀照片 49
圖 3.20 為表 3.14中之實驗樣品對照圖(OM影像或照片) 50
圖 3.21 為表 3.15中之實驗樣品對照圖(OM影像或照片) 51
圖 3.22 為表 3.16中之實驗樣品對照圖(OM影像或照片) 52
圖 3.23鍺薄膜在玻璃鍍率對各參數(a)基板溫度(b)氣體流量(c)電漿功率(d)成長時間關係圖 53
圖 3.24矽的表面形貌隨著基板溫度變化 55
圖 3.25 矽/ITO玻璃的表面形貌隨厚度的變化 55
圖 3.26矽薄膜/ITO導電玻璃隨(a)厚度(b)基板溫度變化的拉曼光譜 56
圖 3.27矽/無鹼玻璃XRD繞射圖譜 56
圖 3.28矽/ITO導電玻璃XRD繞射圖譜 57
圖 3.29矽/石英玻璃XRD繞射圖譜 57
圖 3.30矽薄膜蝕刻改變溫度的表面形貌變化SEM圖 59
圖 3.31矽蝕刻活化能擬和曲線 59
圖 3.32矽成長活化能擬和曲線 60
圖 3.33 鍺與矽介面線缺陷密度(a)TEM圖[35] (b)本研究所使用的鍺薄膜隨厚度的電阻率變化 62
圖 3.34 片電阻與電阻率對鍍膜時流量比改變的關係(鎵摻雜鍺薄膜/本質矽) 64
圖 3.35片電阻與電阻率對鍍膜時基板溫度改變的關係(鎵摻雜鍺薄膜/鍺緩衝層/本質矽) 65
圖 3.36片電阻與電阻率對前驅物溫度改變的關係(鎵摻雜鍺薄膜/本質矽) 65
圖 3.37帶入假設遷移率介於100~1700cm2/Vs得到的載子濃度範圍 66
圖 3.38 鍺電洞遷移率與摻雜濃度關係[38] 67
圖 3.39 鍺/玻璃太陽能電池橫截面示意圖 69
圖 3.40 有效元件1 :B:Ge/i-Ge/n-Si 之(a)暗電流密度(b)量子效率(c)電壓電流曲線圖 70
圖 3.41有效元件2 :Ga:Ge/i-Ge/n-Si之(a)暗電流密度(b)量子效率(c)電壓電流曲線圖 70
圖 3.42目前測試過的鍺/矽太陽能電池異質材料堆疊架構IPCE量測 72
參考文獻 [1] G. Sun, F. Chang, and R. A. Soref, "High efficiency thin-film crystalline Si/Ge tandem solar cell," Opt. Express, vol. 18, no. 4, pp. 3746-3753, 2010/02/15 2010, doi: 10.1364/OE.18.003746.
[2] Y. Ota, "Growth of high quality Ge MBE film," Journal of Crystal Growth, vol. 61, no. 3, pp. 431-438, 1983/04/01/ 1983, doi: https://doi.org/10.1016/0022-0248(83)90171-9.
[3] M. Steglich et al., "Heteroepitaxial Ge-on-Si by DC magnetron sputtering," AIP Advances, vol. 3, no. 7, 2013, doi: 10.1063/1.4813841.
[4] R. Cariou et al., "Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process," Progress in Photovoltaics: Research and Applications, vol. 24, no. 8, pp. 1075-1084, 2016, doi: https://doi.org/10.1002/pip.2762.
[5] Z. Huang, "Germanium photodetector integrated with silicon-based optical receivers."
[6] S. Alshkeili and M. Emziane, "Design of Si/Ge Dual Junction Solar Cell Devices," Energy Procedia, vol. 42, pp. 698-707, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.egypro.2013.11.072.
[7] V. Sorianello, L. Colace, C. Maragliano, D. Fulgoni, L. Nash, and G. Assanto, "Germanium-on-Glass solar cells: fabrication and characterization," Opt. Mater. Express, vol. 3, no. 2, pp. 216-228, 2013/02/01 2013, doi: 10.1364/OME.3.000216.
[8] Z. Zhou, C. Li, H. Lai, S. Chen, and J. Yu, "The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition," Journal of Crystal Growth, vol. 310, no. 10, pp. 2508-2513, 2008/05/01/ 2008, doi: https://doi.org/10.1016/j.jcrysgro.2008.01.016.
[9] M. C. Öztürk et al., "Rapid thermal chemical vapor deposition of germanium on silicon and silicon dioxide and new applications of ge in ULSI technologies," Journal of Electronic Materials, vol. 19, no. 10, pp. 1129-1134, 1990/10/01 1990, doi: 10.1007/BF02651993.
[10] E. U. Onyegam et al., "Exfoliated, thin, flexible germanium heterojunction solar cell with record FF=58.1%," Solar Energy Materials and Solar Cells, vol. 111, pp. 206-211, 2013/04/01/ 2013, doi: https://doi.org/10.1016/j.solmat.2013.01.002.
[11] M. Janai, D. D. Allred, D. C. Booth, and B. O. Seraphin, "Optical properties and structure of amorphous silicon films prepared by CVD," Solar Energy Materials, vol. 1, no. 1, pp. 11-27, 1979/02/01/ 1979, doi: https://doi.org/10.1016/0165-1633(79)90053-4.
[12] T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, "Growth-front roughening in amorphous silicon films by sputtering," Physical Review B, vol. 64, no. 8, p. 085323, 08/08/ 2001, doi: 10.1103/PhysRevB.64.085323.
[13] U. König, H. Kibbel, and E. Kasper, "Si–MBE: Growth and Sb doping," Journal of Vacuum Science and Technology, vol. 16, no. 4, pp. 985-989, 1979, doi: 10.1116/1.570165.
[14] D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976, doi: 10.1063/1.88617.
[15] R. Cariou, M. Labrune, and P. Roca i Cabarrocas, "Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD," Solar Energy Materials and Solar Cells, vol. 95, no. 8, pp. 2260-2263, 2011/08/01/ 2011, doi: https://doi.org/10.1016/j.solmat.2011.03.038.
[16] H. M. Branz et al., "Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics," Thin Solid Films, vol. 519, no. 14, pp. 4545-4550, 2011/05/02/ 2011, doi: https://doi.org/10.1016/j.tsf.2011.01.335.
[17] C. W. Teplin et al., "Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass," Progress in Photovoltaics: Research and Applications, vol. 23, no. 7, pp. 909-917, 2015, doi: https://doi.org/10.1002/pip.2505.
[18] M. S. Branham et al., "15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures," (in eng), Adv Mater, vol. 27, no. 13, pp. 2182-8, Apr 1 2015, doi: 10.1002/adma.201405511.
[19] N. E. Posthuma, J. v. d. Heide, G. Flamand, and J. Poortmans, "Emitter Formation and Contact Realization by Diffusion for Germanium Photovoltaic Devices," IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1210-1215, 2007, doi: 10.1109/TED.2007.894610.
[20] S. G. Kim, G. S. Kim, S. H. Kim, and H. Y. Yu, "Low-Temperature Hybrid Dopant Activation Technique Using Pulsed Green Laser for Heavily-Doped n-Type SiGe Source/Drain," IEEE Electron Device Letters, vol. 39, no. 12, pp. 1828-1831, 2018, doi: 10.1109/LED.2018.2875751.
[21] V. Boldrini et al., "Optimal process parameters for phosphorus spin-on-doping of germanium," Applied Surface Science, vol. 392, pp. 1173-1180, 2017/01/15/ 2017, doi: https://doi.org/10.1016/j.apsusc.2016.09.134.
[22] T.-H. Yang et al., "Deposition of GeSn film on Si substrate by plasma-enhanced chemical vapor deposition using GeCl4 and SnCl4 in H2 for developing short-wave infrared Si photonics," Materials Science in Semiconductor Processing, vol. 162, p. 107515, 2023/08/01/ 2023, doi: https://doi.org/10.1016/j.mssp.2023.107515.
[23] D. K. Schroder, R. N. Thomas, and J. C. Swartz, "Free Carrier Absorption in Silicon," IEEE Journal of Solid-State Circuits, vol. 13, no. 1, pp. 180-187, 1978, doi: 10.1109/JSSC.1978.1051012.
[24] D. Skarlatos, D. Velessiotis, M. C. Skoulikidou, V. Ioannou-Sougleridis, N. Z. Vouroutzis, and J. Stoemenos, "Substrate damage in ion-implanted (100) germanium after extended ms flash lamp annealing: Origins and suppression," Materials Science in Semiconductor Processing, vol. 122, p. 105477, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.mssp.2020.105477.
[25] J.-Y. Lai, S.-C. Tsai, M.-W. Lin, and S.-y. Chen, "Deposition of high-quality Ge film on Si by PECVD using GeCl4/H2 for fabricating near-infrared photodiodes," Materials Science in Semiconductor Processing, vol. 148, p. 106740, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.mssp.2022.106740.
[26] L. De Los Santos Valladares et al., "Surface morphology of amorphous germanium thin films following thermal outgassing of SiO2/Si substrates," Applied Surface Science, vol. 316, pp. 15–21, 10/01 2014, doi: 10.1016/j.apsusc.2014.07.073.
[27] 賴俊佑, "以電漿輔助化學氣相沉積外延高品質鍺薄膜," 碩士, 物理學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/n5m472
[28] M. E. Straumanis and E. Z. Aka, "Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium," Journal of Applied Physics, vol. 23, no. 3, pp. 330-334, 1952, doi: 10.1063/1.1702202.
[29] C.-L. Tien and T.-W. Lin, "Out-of-Plane Thermal Expansion Coefficient and Biaxial Young’s Modulus of Sputtered ITO Thin Films," Coatings, vol. 11, no. 2, p. 153, 2021. [Online]. Available: https://www.mdpi.com/2079-6412/11/2/153.
[30] C. Krataithong, K. Srichai, E. Wongrat, and A. Tubtimtae, "Comparative study on the influence of transparent glass substrates for antimony telluride thin films via structural and optical properties," Journal of Science: Advanced Materials and Devices, vol. 7, no. 3, p. 100449, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.jsamd.2022.100449.
[31] 蘇芳儀, "厚度對氧化銦錫/聚乙烯對苯二甲酸酯(ITO/PET)薄膜熱膨脹係數之影響," 碩士, 機械與機電工程學系研究所, 國立中山大學, 高雄市, 2011. [Online]. Available: https://hdl.handle.net/11296/y3wdze
[32] V. Yang, M. Groenert, C. Leitz, A. Pitera, M. Currie, and E. A. Fitzgerald, "Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates," Journal of Applied Physics, vol. 93, pp. 3859-3865, 04/01 2003, doi: 10.1063/1.1558963.
[33] T. Imajo, T. Suemasu, and K. Toko, "Strain effects on polycrystalline germanium thin films," Scientific Reports, vol. 11, no. 1, p. 8333, 2021/04/15 2021, doi: 10.1038/s41598-021-87616-x.
[34] E. G. Bylander, "Kinetics of Silicon Crystal Growth from SiCl4 Decomposition," Journal of The Electrochemical Society, vol. 109, no. 12, p. 1171, 1962/12/01 1962, doi: 10.1149/1.2425266.
[35] H.-C. Luan et al., "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters, vol. 75, no. 19, pp. 2909-2911, 1999, doi: 10.1063/1.125187.
[36] B. Brunetti, V. Piacente, and P. Scardala, "Vapor Pressures of Gallium Trifluoride, Trichloride, and Triiodide and Their Standard Sublimation Enthalpies," Journal of Chemical & Engineering Data, vol. 55, no. 1, pp. 98-102, 2010/01/14 2010, doi: 10.1021/je900276q.
[37] J. E. Huffman and N. L. Casey, "Growth methods for high purity Ge and Ge: Ga homoepitaxy," Journal of Crystal Growth, vol. 129, no. 3, pp. 525-531, 1993/04/01/ 1993, doi: https://doi.org/10.1016/0022-0248(93)90486-G.
[38] S. K. Chun, "Screening effects on the degree of ionization and hole mobility for p‐type Si and Ge," Journal of Applied Physics, vol. 80, no. 8, pp. 4773-4775, 1996, doi: 10.1063/1.363416.
指導教授 陳賜原(Szu-yuan Chen) 審核日期 2024-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明