博碩士論文 111222019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:18.116.89.187
姓名 張文庭(Wen-Ting Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 使用磁屏蔽罩以及紅外光吸收塗層改善量子超導電路之性能
(Improving Performance of Superconducting Quantum Circuits by Magnetic Shielding and Infrared Absorbing Coatin照)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ 工程化超導電路上三維腔量子電動力學系統
★ Characterizing single-qubit gate fidelity on superconducting qubits★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator
★ 超導雙量子位元電路的實現★ Developing Flux-Driven Josephson Parametric Amplifer
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超導量子位元電路的同調性能對於量子計算是至關重要的一環。足夠長的量子位元存活時間 T1 對量子處理器進行量子閘的操作過程是必須的。使用在量子計算中的超導量子電路的性能受到各種損耗而受限,我們的對策是找出這些損耗機制的來源並設計相應的遮罩來提升性能。這篇論文將呈現對於磁場遮蔽罩、紅外光吸收塗層以及密封遮罩之效果的研究。磁場遮蔽罩是一個由mu-metal金屬製成的圓筒形遮罩,mu-metal有非常高的磁導率使得它擁有很好的遮蔽效果,在0.1mT外部磁場的模擬中達到小於-50 dB的遮蔽性能。在我們的量測中,量子位元內部品質因子Qi、存活時間T1以及退相位時間T2是量子位元性能的指標。這些參數同樣受上述損耗機制的影響。量測皆在稀釋製冷機中進行,並且使用來自威斯康辛大學麥迪遜分校McDermott 教授提供的超導量子位元電路樣品。在沒有遮罩的量測中,T1 = 10.9 µs以及T2 = 2.89 µs,在所有遮罩都被安裝的量測中,性能提
升至T1 = 28.0 µs以及T2 = 5.30 µs。內部品質因子Qi、存活時間T1以及退相位時間T2的提升顯示遮罩在我們的架設下超導量子位元電路的同調性能的提升。
摘要(英) The coherence performance of superconducting qubits is crucial for quantum computing. For a quantum processor, a sufficiently long coherence is essential for the quantum gate operation processes. The coherence performance of superconducting circuits for quantum computing is limited by losses. Finding out the sources of the loss mechanisms and designing shielding for them is our strategy to improve the
performance. In this thesis, we present a study of the shielding effects of mu-metal shielding, infrared absorbing coating, and sealing shield. The magnetic shielding is
a cylinder can made of mu-metal. The mu-metal has very high permeability which makes the shielding have good shielding performance under -50 dB in the 0.1mT external magnetic field simulations. In our measurement, qubit quality factor Qi, relaxation time T1, and dephasing time T2 are an indicators for qubit performance. These parameters are subject to the effect of the loss mechanisms mentioned above. Measurements were performed in a dilution refrigerator with a superconducting qubit sample from the Prof. McDermott group at the University of Wisconsin Madison. For the qubit without shielding, T1 = 10.9 µs and T2 = 2.89 µs with qubit frequency at 5.229 GHz. The qubit with all shielding has better T1 = 28.0 µs and T2 = 5.30 µs with qubit frequency at 5.145 GHz. The improved Qi
, T1 and T2 shows the successful shielding.
關鍵字(中) ★ 量子位元 關鍵字(英) ★ qubit
論文目次 Abstract i
Contents ii
List of Figures iv
1 Introduction 1
1.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Theory 8
2.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Superconducting Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Quantum LC Circuit . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Transmon Qubit . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Jaynes-Cummings Hamiltonian . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Sources of Loss for Superconducting Circuit . . . . . . . . . . . . . . 17
2.4.1 TLS loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Quasiparticle Loss . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Magnetic Trapped Vortex . . . . . . . . . . . . . . . . . . . . 18
2.5 Magnetic Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Meissner effect . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Mu-metal Shielding Effect . . . . . . . . . . . . . . . . . . . . 20
3 Design and Fabrication 22
3.1 Shielding Superconducting Circuits . . . . . . . . . . . . . . . . . . . 22
3.2 Mu-metal Shielding design . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Simulations of Magnetic Shielding . . . . . . . . . . . . . . . . 24
3.3 Infrared Light Absorbing . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 IR Absorbing Coating . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Sealing Shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Thermal Anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Experimental Setup 30
4.1 3He-4He Dilution Refrigeration . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Shielding Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Experimental Results 35
5.1 T1 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 T2 Ramsey Characterization . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Shielding Configuration and Results . . . . . . . . . . . . . . . . . . . 37
5.4 Temperature Improvement . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Conclusion 41
Reference 42
參考文獻 [1] P. Krantz et al. A quantum engineer’s guide to superconducting qubits. Appl.
Phys. Rev, 6:021318, 2019.
[2] Y. Nakamura et al. Coherent control of macroscopic quantum states in a singlecooper-pair box. Nature, 398:786–788, 1999.
[3] H. Mabuchi et al. Cavity quantum electrodynamics: coherence in context.
Science., 298:1372–1377, 2002.
[4] J. M. Raimond et al. Manipulating quantum entanglement with atoms and
photons in a cavity. Rev. Mod. Phys., 73:565, 2001.
[5] A. Blais et al. Cavity quantum electrodynamics for superconducting electrical
circuits: An architecture for quantum computation. Phys. Rev. A, 69:062320,
2004.
[6] A. Wallraff et al. Strong coupling of a single photon to a superconducting qubit
using circuit quantum electrodynamics. Nature, 431:162–167, 2004.
[7] A. Wallraff et al. Approaching unit visibility for control of a superconducting
qubit with dispersive readout. Phys. Rev. Lett., 95:060501, 2005.
[8] J. Clarke et al. Superconducting quantum bits. Nature, 453:1031–1042, 2008.
[9] Yu. A. Pashkin et al. Josephson charge qubits: a brief review. Quantum Inf
Process, 8:55–80, 2009.
[10] D.R. Ward et al. State-conditional coherent charge qubit oscillations in a si/sige
quadruple quantum dot. npj Quantum Inf., 2:16032, 2016.
[11] R. Harris et al. Experimental demonstration of a robust and scalable flux qubit.
Phys. Rev. B, 81:134510, 2010.
[12] M. Steffen et al. Accurate control of josephson phase qubits. Phys. Rev. B,
68:224518, 2003.
[13] J. Koch et al. Charge-insensitive qubit design derived from the cooper pair box.
Phys. Rev. A, 76:042319, 2007.
[14] C.R.H. McRae et al. Materials loss measurements using superconducting microwave resonators. Rev. Sci. Instrum., 91:091101, 2020.
[15] J. Lisenfeld et al. Observation of directly interacting coherent two-level systems
in an amorphous material. Nat. Commun., 6:6182, 2015.
[16] R. Barends et al. Coherent josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett., 111:080502, 2013.
[17] C. M¨uller et al. Interacting two-level defects as sources of fluctuating highfrequency noise in superconducting circuits. Phys. Rev. B, 92:035442, 2015.
[18] B Chiaro et al. Dielectric surface loss in superconducting resonators with fluxtrapping holes. Supercond. Sci. Technol., 29:104006, 2016.
[19] P. V. Klimov et al. Fluctuations of energy-relaxation times in superconducting
qubits. Phys. Rev. Lett., 121:090502, 2018.
[20] A. D. C´orcoles et al. Protecting superconducting qubits from radiation. Appl.
Phys. Lett., 99:181906, 2011.
[21] Yuhao Liu et al. Increasing energy relaxation time of superconducting qubits
with nonmagnetic infrared filter and shield. Chin. Phys. B, 25:058501, 2016.
[22] R. Barends et al. Minimizing quasiparticle generation from stray infrared light
in superconducting quantum circuits. Appl. Phys. Lett., 99:113507, 2011.
[23] J. M. Kreikebaum et al. Optimization of infrared and magnetic shielding of
superconducting tin and al coplanar microwave resonators. Supercond. Sci.
Technol., 29:104002, 2016.
[24] D. Bothner et al. Reducing vortex losses in superconducting microwave
resonators with microsphere patterned antidot arrays. Appl. Phys. Lett.,
100:012601, 2012.
[25] C. Song et al. Microwave response of vortices in superconducting thin films of
re and al. Phys. Rev. B, 79:174512, 2009.
[26] J. M. Kreikebaum. Superconducting qubit enabled single microwave photon
detection. Doctoral dissertation, University of California, Berkeley, 2020.
[27] A.P.M. Place et al. New material platform for superconducting transmon qubits
with coherence times exceeding 0.3 milliseconds. Nature, 12:1779, 2021.
[28] B.D. Josephson et al. Possible new effects in superconductive tunnelling. Phys.
Lett., 1:251–253, 1962.
[29] J. M. Martinis et al. Decoherence in josephson qubits from dielectric loss. Phys.
Rev. Lett., 95:210503, 2005.
[30] D. C. Mattis and J. Bardeen. Theory of the anomalous skin effect in normal
and superconducting metals. Phys. Rev., 111:412, 1958.
[31] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.
[32] T. O. Klaassen et al. Absorbing coatings and diffuse reflectors for the herschel
platform sub-millimeter spectrometers hifi and pacs. Proceedings of IEEE 10th
International Conference on THz Electronics, pages 32–35, 2002.
指導教授 陳永富(Yung-Fu Chen) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明