博碩士論文 107282603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.219.131.216
姓名 林仲杰(Lim Chong Chiat)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Molecular Dynamics and Metadynamics Molecular Dynamics Simulation Study of the Structural Properties and Intrinsic Chirality of Metallic Clusters within the Density Functional Based Tight-Binding Theory)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 金銅合金金屬叢集(N=38)的磁性性質研究★ 膠體、盤狀粒子混合系統的兩階段動態相變區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 在與第一原理方法相較的情況下,奈米叢集理論之研究中採用的密度泛函緊束縛( Density Functional Tight-Binding, DFTB ) 理論,可促使模擬時間尺度在可負擔之計算成本下獲得延長,並在準確性上達到接近之優勢。我們透過改進版的谷域跳躍( modified basin-hopping )優化演算法,發現 DFTB 對金銀銅之小型叢集所預測之最低能量結構,爲擁有鏡像對稱的 Cu12 、 Cu14 、 Cu19 、Ag14 、 Ag17 、 Ag20 、 Au10 、 Au15 和 Au18 。利用昊斯多夫鏡像計量( Hausdorff chirality measure )與超快速形狀識別技術( ultra-fast shape recognition technique )的分析,鏡像結構得以在數學架構內精準地被描述。兩者巧妙的串聯應用亦有助於尋找一對鏡像結構中之非鏡像中間結構,從而獲得納入向量考量的反應坐標( reaction coordinates ),再用來闡明在布朗型恆溫分子動力學模擬下 Cu14 、 Au10 與 Au15 的鏡像變相。 經由振動頻率的計算顯示,該相變機制可歸因於,鏡像異構物之間的簡正模態,經由其中間結構,促進了這些相變。在 Au18 的案例中,其各個鏡像結構之間存在著能量障壁,我們演示了亞穩動力( metadynamics )技術擁有跨越其能量障壁的能力,也證明了在低維度的自由能景觀( free energy landscape , FEL )中存在著變相途徑。本論文的第二部分中,我們運用基於自適應方法取得的最新 DFTB 參數,對 n = 3-20 範圍內不帶電金叢集進行結構研究,重新探討由二維轉換至三維叢集之臨界粒子數 nc 。透過對訂定的 DFTB 參數之表現進行分析與比較,評估發現其與文獻中的結構爲一致,而且該參數適合金 叢集之計算。 亞穩動力所探索接近 nc 之金叢集顯示, FEL 具有能量谷域之間被能量障壁區分之特徵,並包含金叢集結構性熵( entropy )與焓( enthalpy )之資訊。
摘要(英) The use of density functional tight-binding (DFTB) in the theoretical studies of nanoclusters opened up access to longer timescales in simulation at an affordable computing cost and with little trade off in accuracy against ab initio or first principle methods. The purported global minimum (GM) structures of small Cu, Ag and Au clusters at the DFTB level, predicted by a modified basin-hopping global optimization algorithm, have revealed the existence of GM structures manifesting in chiral pairs Cu12 , Cu14 , Cu19 , Ag14 , Ag17 , Ag20 , Au10 , Au15 and Au18 . These chiral structures are studied by the Hausdorff chirality measure and ultra-fast shape recognition technique to ascertain their chiral nature in a mathematical formalism, in addition to an adroit and tandem use of both methods in identifying intermediate structures that point to suitable reaction coordinates derived from vectorial considerations to elucidate the enantiomeric transitions in Cu14 , Au10 and Au15 that are observable with a Brownian-type isothermal molecular dynamics simulation. Calculation of vibrational frequencies suggests the transition mechanisms are attributable to normal modes facilitating transitions between enantiomers via the identified intermediate structures. In the case of Au18 , where chiral states are hindered by hypothesized high energy barriers betweenthem, metadynamics has demonstrated its biasing abilities to overcome such barriers and shown the existence of transition pathways in an expressive lower dimension in the free energy landscape. In the second segment of this thesis, a systematic study of static neutral Aun structures in the range n = 3-20, using a recent DFTB parametrization available based on an adaptive scheme, is conducted to revisit the critical size, nc where the dimensionality transition of planar-nonplanar Au clusters occurs. The quality of said DFTB parametrization is assessed, and found to be adequate and consistent against structures reported in the literature. The energy landscapes of Aun close to nc explored by metadynamics are characterized by distinct regions of energy wells separated by barriers, and carry with them valuable information encompassing both the conformational enthalpy and conformational entropy of Au clusters.
關鍵字(中) ★ 分子動力學(MD)模擬
★ 亞穩動力MD模擬
★ 金屬鏡像叢集
★ 密度泛函緊束縛(DFTB)理論
關鍵字(英) ★ MD simulation
★ Metadynamics MD simulation
★ Metallic chiral cluster
★ DFTB theory
論文目次 摘要.............................................................................................................................................i
ABSTRACT...............................................................................................................................ii
Preface.......................................................................................................................................iii
Acknowledgments....................................................................................................................iv
Table of Contents.......................................................................................................................v
List of Figures...........................................................................................................................ix
List of Tables.......................................................................................................................xxiv
Explanation of Symbols...................................................................................................xxviii
1 Introduction..............................................................................................................................1
2 Methodology............................................................................................................................3
2.1 Density Functional Tight-Binding (DFTB) Theory.........................................................3
2.2 Modified Basin-Hopping (MBH) Global Optimization Method.....................................5
2.3 Isothermal Brownian-Type Molecular Dynamics Simulation Method............................6
2.4 Collective Variables (CV).................................................................................................8
2.5 Metadynamics..................................................................................................................9
2.5.1 Statistical mechanics and collective variables..........................................................9
2.5.2 MD simulation and collective variables.................................................................10
2.5.3 MMD simulation in CV space: theory....................................................................12
2.5.4 The Gaussian potential...........................................................................................14
2.5.5 Well-tempered simulation technique in CV s-space...............................................15
2.5.6 Restraining wall potential V wall ................................................................................16
2.5.7 Detailed execution of the well-tempered algorithm...............................................16
2.6 Ultra-fast Shape Recognition Technique (USRT)..........................................................20
2.7 Hausdorff Chirality Measure (HCM).............................................................................24
2.7.1 Geometrical definition of HCM.............................................................................25
2.7.2 Chirality parameter.................................................................................................25
2.7.3 Numerical Implementation of HCM.......................................................................26
3 Chirality in the Coinage Metal Clusters, for n = 3-20: A study on Cu 14 ................................30
3.1 Introduction....................................................................................................................31
3.2 Methods..........................................................................................................................34
3.3 Results and Discussion...................................................................................................35
3.3.1 Lowest-energy structures of Cu clusters.................................................................35
3.3.2 Enantiomers Cu 14 : Cu 14 -L and Cu 14 -R.....................................................................41
3.3.2.1 MD simulation: R g and CN.............................................................................41
3.3.2.2 Reaction coordinate........................................................................................43
3.3.2.3 Distribution of reaction coordinate.................................................................46
3.3.2.4 Transition events, time span of transitions, and distribution of time span
events..........................................................................................................................47
3.3.2.5 Vibrational analysis for Cu 14 -L/R and Cu 14 -i..................................................50
3.4 Chapter Conclusion........................................................................................................56
4 Chiral Au 10 and Temperature Effects on its Enantiomeric Transitions...................................58
4.1 Introduction....................................................................................................................58
4.2 Methods..........................................................................................................................61
4.3 Results and Discussions.................................................................................................62
4.3.1 Enantiomeric pair of Au 10 .......................................................................................62
4.3.2 MD simulation: Enantiomeric transitions...............................................................63
4.3.3 Reaction coordinate deduced from Au 10 -i...............................................................67
4.3.4 Searching for the intermediate structure Au 10 -i......................................................69
4.3.5 Transition events and their time spans....................................................................73
4.3.6 Times series and distribution of reaction coordinates............................................75
4.3.7 Vibrational analysis for Au 10 -L, Au 10 -R and Au 10 -i.................................................79
4.4 Chapter Conclusion........................................................................................................83
5 Enantiomeric Transitions in Chiral Au 15 Studied by a Reaction Coordinate.........................85
5.1 Introduction....................................................................................................................86
5.2 Methods..........................................................................................................................89
5.2.1 DFTB parametrization............................................................................................89
5.3 Results and Discussions.................................................................................................90
5.3.1 Simulation Data: CN and R g in CV Space..............................................................90
5.3.2 Reaction Coordinate...............................................................................................94
5.3.3 Distribution of Reaction Coordinate.......................................................................95
5.3.4 Characteristics of Figure 5.2...................................................................................96
5.3.5 Simulation Results between 0 and 1 ns (Au 15 -L) and between 0 and 2.8 ns (Au 15 -
R).....................................................................................................................................98
5.3.6 Simulation Results Spanning 1.05−1.12 ns (Au 15 -L) and 2.88−3.02 ns (Au 15 -R)..98
5.3.7 Transition Events and Time Span of Transitions..................................................100
5.3.8 Distribution of Time Spans of Enantiomeric Transition Events and Autocorrelation
Function.........................................................................................................................103
5.3.9 Vibrational Analysis for Au 15 -L/R, Au 15 -i and Au 15 -i h ...........................................105
5.4 Chapter Conclusion......................................................................................................110
6 Metadynamics to Observe Chiral Transitions in Au 18 ..........................................................113
6.1 Introduction..................................................................................................................113
6.2 Methods........................................................................................................................117
6.2.1 DFTB parametrization..........................................................................................117
6.3 Numerical results and discussions................................................................................118
6.3.1 Direct evidence of chirality in Au 18 cluster...........................................................121
6.3.1.1 Well-tempered MMD simulation in CN-R g space.........................................121
6.3.1.2 Free energy surface in CN-R g space..............................................................123
6.3.2 Indirect evidence of chirality in Au 18 cluster........................................................128
6.3.2.1 Ferreting out a symmetrical structure by MMD simulation.........................128
6.3.2.2 MD simulation: the symmetrical structure Au 18S ..........................................133
6.3.3 Dynamics of ions in Au 18S → Au 18 -L/R transition................................................135
6.4 Chapter Conclusion......................................................................................................139
6.5 Chapter Appendix.........................................................................................................140
7 Free Energy Landscape close to n c of Au n , n = 10-12..........................................................146
7.1 Introduction..................................................................................................................146
7.2 Methods........................................................................................................................153
7.2.1 DFTB parametrization..........................................................................................153
7.3 Numerical Results and Discussions.............................................................................156
7.3.1 Lowest lying structures of Au n at 0 K...................................................................156
7.3.1.1 Comparison of Au n structures between DFTB theory and DFT...................159
7.3.1.2 BDFTB scheme vs DFT: lowest-energy structures for clusters Au 11 -Au 14 ...164
7.3.2 MMD simulation for Au n (n = 10-12) at 300 K...................................................167
7.3.2.1 Au 10 ................................................................................................................168
7.3.2.2 Au 11 ................................................................................................................173
7.3.2.3 Au 12 ................................................................................................................177
7.3.2.4 MMD simulation recap.................................................................................182
7.4 Chapter Conclusion......................................................................................................184
7.5 Chapter Appendix.........................................................................................................186
8 Conclusion...........................................................................................................................189
8.1 MD Simulation Study of Chiral Metallic Clusters.......................................................189
8.2 MD & MMD Simulation Study of Chiral Au 18 ............................................................191
8.3 Free Energy Landscape close to n 2D-3D of Au n , n = 10-12.............................................192
Bibliography............................................................................................................................194
Appendix A.............................................................................................................................211
參考文獻 [1] Lim C C and Lai S K 2020 Enantiomeric Transitions in the Chiral Cluster Au 15 Studied
by a Reaction Coordinate Deduced from Molecular Dynamics Simulations J. Phys.
Chem. A 124 8679–91
[2] Lai S K and Lim C C 2021 Neutral gold clusters studied by the isothermal Brownian-
type molecular dynamics and metadynamics molecular dynamics simulations J.
Comput. Chem. 42 310–25
[3] Lim C C and Lai S K 2022 Metadynamics molecular dynamics and isothermal
Brownian-type molecular dynamics simulations for the chiralcluster Au 18 J. Phys.:
Condens. Matter 34 325201
[4] Lim C C 2018 Studying Neutral Gold Clusters by the Brownian-type and
Metadynamics Molecular Dynamics Simulations (Zhongli, Taiwan, Republic of China:
National Central University)
[5] Lai S K and Lim C C 2024 Stable structures of copper clusters: from enantiomerism
and quantification of chirality using Hausdorff chirality measure to unraveling the
enantiomeric dynamics bymolecular dynamics simulation
[6] Lim C C and Lai S K 2024 Molecular dynamics simulation of chiral cluster Au 10 and
the use of reaction coordinate to unravel its enantiomeric transition
[7] Lim C C and Lai S K 2024 Structures of neutral gold clusters calculated by the DFTB
theory and insights into the structures of clusters at finite temperatures applying
metadynamics molecular dynamics simulations
[8] Humphrey W, Dalke A and Schulten K 1996 VMD: visual molecular dynamics J. Mol.
Graphics 14 33–8
[9] Anon Jmol: an open-source java viewer for chemical structures in 3D.
[10] Polik W F and Schmidt J R 2022 W EB MO : Web ‐ based computational chemistry
calculations in education and research WIREs Comput Mol Sci 12
[11] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S and
Seifert G 1998 Self-consistent-charge density-functional tight-binding method for
simulations of complex materials properties Phys. Rev. B 58 7260–8
[12] Hohenberg P and Kohn W 1964 Inhomogeneous Electron Gas Phys. Rev. 136 B864–71
[13] Kohn W and Sham L J 1965 Self-Consistent Equations Including Exchange and
Correlation Effects Phys. Rev. 140 A1133–8
[14] Yang Y, Yu H, York D, Cui Q and Elstner M 2007 Extension of the Self-Consistent-
Charge Density-Functional Tight-Binding Method: Third-Order Expansion of the
Density Functional Theory Total Energy and Introduction of a Modified Effective
Coulomb Interaction J. Phys. Chem. A 111 10861–73
[15] Gaus M, Goez A and Elstner M 2013 Parametrization and Benchmark of DFTB3 for
Organic Molecules J. Chem. Theory Comput. 9 338–54
[16] Christensen A S, Kubař T, Cui Q and Elstner M 2016 Semiempirical Quantum
Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical
Applications Chem. Rev. 116 5301–37
[17] Aradi B, Hourahine B and Frauenheim Th 2007 DFTB+, a Sparse Matrix-Based
Implementation of the DFTB Method J. Phys. Chem. A 111 5678–84
[18] Anon AMS DFTB, SCM, Theoretical Chemistry, Vrije Universiteit
[19] Wales D J and Doye J P K 1997 Global Optimization by Basin-Hopping and the
Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms J.
Phys. Chem. A 101 5111–6
[20] Li Z and Scheraga H A 1987 Monte Carlo-minimization approach to the multiple-
minima problem in protein folding. Proc. Natl. Acad. Sci. U.S.A. 84 6611–5
[21] Yen T W and Lai S K 2015 Use of density functional theory method to calculate
structures of neutral carbon clusters C n (3 ≤ n ≤ 24) and study their variability of
structural forms J. Chem. Phys. 142 084313
[22] Liu D C and Nocedal J 1989 On the limited memory BFGS method for large scale
optimization Math. Program. 45 503–28
[23] Lai S K, Lin W D, Wu K L, Li W H and Lee K C 2004 Specific heat and Lindemann-
like parameter of metallic clusters: Mono- and polyvalent metals J. Chem. Phys. 121
1487–98
[24] Bulgac A and Kusnezov D 1990 Canonical ensemble averages from
pseudomicrocanonical dynamics Phys. Rev. A 42 5045–8
[25] Kusnezov D, Bulgac A and Bauer W 1990 Canonical ensembles from chaos I: classical
systems Ann. Phys. 204 155–62
[26] Bulgac A and Kusnezov D 1992 Thermal properties of Na 8 microclusters Phys. Rev.
Lett. 68 1335–8
[27] Bulgac A and Kusnezov D 1992 Phase transitions in Na 7 –Na 9 microclusters Phys. Rev.
B 45 1988–97
[28] Kusnezov D and Bulgac A 1992 Canonical ensembles from chaos II: Constrained
dynamical systems Annals of Physics 214 180–218
[29] Ju N and Bulgac A 1993 Finite-temperature properties of sodium clusters Phys. Rev. B
48 2721–32
[30] Nosé S 1984 A unified formulation of the constant temperature molecular dynamics
methods J. Chem. Phys. 81 511–9
[31] Borgs C and Kotecký R 1995 Surface-induced finite-size effects for first-order phase
transitions J. Stat. Phys. 79 43–115
[32] Ashcroft N W and Mermin N D 1976 Solid State Physics (Cengage Learning)
[33] Santarossa G, Vargas A, Iannuzzi M and Baiker A 2010 Free energy surface of two-
and three-dimensional transitions of Au 12 nanoclusters obtained by ab initio
metadynamics Phys. Rev. B 81 174205
[34] Barducci A, Bussi G and Parrinello M 2008 Well-Tempered Metadynamics: A
Smoothly Converging and Tunable Free-Energy Method Phys. Rev. Lett. 100 020603
[35] Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D,
Marinelli F, Pietrucci F, Broglia R A and Parrinello M 2009 PLUMED: A portable
plugin for free-energy calculations with molecular dynamics Comput. Phys. Commun.
180 1961–72
[36] Laio A and Parrinello M 2002 Escaping free-energy minima Proc. Natl. Acad. Sci.
U.S.A. 99 12562–6
[37] Laio A and Gervasio F L 2008 Metadynamics: a method to simulate rare events and
reconstruct the free energy in biophysics, chemistry and material science Rep. Prog.
Phys. 71 126601
[38] Barducci A, Bonomi M and Parrinello M 2011 Metadynamics WIREs Comput Mol Sci
1 826–43
[39] Valsson O, Tiwary P and Parrinello M 2016 Enhancing Important Fluctuations: Rare
Events and Metadynamics from a Conceptual Viewpoint Annu. Rev. Phys. Chem. 67
159–84
[40] Ballester P J and Richards W G 2007 Ultrafast shape recognition to search compound
databases for similar molecular shapes J. Comput. Chem. 28 1711–23
[41] Buda A B, Auf der Heyde T and Mislow K 1992 On Quantifying Chirality Angew.
Chem. Int. Ed. Engl. 31 989–1007
[42] Buda A B and Mislow K 1992 A Hausdorff chirality measure J. Am. Chem. Soc. 114
6006–12
[43] Hausdorff F 1957 Set Theory, translated by J. R. Auman et al. (New York: Chelsea
Publishing Company)
[44] Garzón I L, Beltrán M R, González G, Gutierrez-González I, Michaelian K, Reyes-
Nava J A and Rodríguez-Hernández J I 2003 Chirality, defects, and disorder in gold
clusters Eur. Phys. J. D. 24 105–9
[45] Pelayo J J, Whetten R L and Garzón I L 2015 Geometric Quantification of Chirality in
Ligand-Protected Metal Clusters J. Phys. Chem. C 119 28666–78
[46] Pelayo J J, Valencia I, García A P, Chang L, López M, Toffoli D, Stener M, Fortunelli
A and Garzón I L 2018 Chirality in bare and ligand-protected metal nanoclusters Adv.
Phys.: X 3 1509727
[47] Yen T-W, Lim T-L, Yoon T-L and Lai S K 2017 Studying the varied shapes of gold
clusters by an elegant optimization algorithm that hybridizes the density functional
tight-binding theory and the density functional theory Comput. Phys. Commun. 220
143–9
[48] Rahmani N S 2017 Calculate the lowest energy structures of Au and Ag clusters by the
DFT-based theory and using the Au conformations obtained compare classically and
quantum-mechanically their valence electron charge distributions (Zhongli, Taiwan,
Republic of China: National Central University)
[49] Lai S K and Maftuhin W 2019 An efficient optimization algorithm that hybridizes
DFTB and DFT theories both operated within the modified basin hopping method
Comput. Phys. Commun. 236 164–75
[50] Yen T W and Lai S K 2018 The subtlety of resolving orbital angular momenta in
calculating Hubbard U parameters in the density functional tight-binding theory and its
delicacy is illustrated by the calculated magnetic properties of carbon clusters Theor.
Chem. Acc. 137 134
[51] Lai S K, Setiyawati I, Yen T W and Tang Y H 2017 Studying lowest energy structures
of carbon clusters by bond-order empirical potentials Theor. Chem. Acc. 136 20
[52] Tseng C C 2020 Chirality in Ag clusters by the isothermal Brownian-type molecular
dynamics simulations
[53] Bolhuis P G, Chandler D, Dellago C and Geissler P L 2002 TRANSITION PATH
SAMPLING : Throwing Ropes Over Rough Mountain Passes, in the Dark Annu. Rev.
Phys. Chem. 53 291–318
[54] Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Trends in the structure
and bonding of noble metal clusters Phys. Rev. B 70 165403
[55] Oliveira L F L, Tarrat N, Cuny J, Morillo J, Lemoine D, Spiegelman F and Rapacioli
M 2016 Benchmarking Density Functional Based Tight-Binding for Silver and Gold
Materials: From Small Clusters to Bulk J. Phys. Chem. A 120 8469–83
[56] Tarrat N, Rapacioli M, Cuny J, Morillo J, Heully J-L and Spiegelman F 2017 Global
optimization of neutral and charged 20- and 55-atom silver and gold clusters at the
DFTB level Comput. Theor. Chem. 1107 102–14
[57] Zhang M, Dong X, Wang Z, Li H, Li S, Zhao X and Zang S 2020 AIE Triggers the
Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I)
Alkynyl Clusters Angew. Chem. 132 10138–44
[58] Zhang C, Li S, Dong X and Zang S 2021 Circularly polarized luminescence of
agglomerate emitters Aggregate 2
[59] Frenzel J, Oliveira A F, Jardillier N, Heine T and Seifert G 2004 Semirelativistic, self-
consistent charge SlaterKoster tables for densityfunctional based tightbinding (DFTB)
for materials science simulations 3
[60] te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A,
Snijders J G and Ziegler T 2001 Chemistry with ADF Journal of Computational
Chemistry 22 931–67
[61] Versluis L and Ziegler T 1988 The determination of molecular structures by density
functional theory. The evaluation of analytical energy gradients by numerical
integration The Journal of Chemical Physics 88 322–8
[62] Fan L and Ziegler T 1991 Optimization of molecular structures by self ‐ consistent and
nonlocal density ‐ functional theory The Journal of Chemical Physics 95 7401–8
[63] Jaque P and Toro-Labbé A 2002 Characterization of copper clusters through the use of
density functional theory reactivity descriptors J. Chem. Phys. 117 3208–18
[64] Jug K, Zimmermann B, Calaminici P and Köster A M 2002 Structure and stability of
small copper clusters J. Chem. Phys. 116 4497
[65] Cao Z, Wang Y, Zhu J, Wu W and Zhang Q 2002 Static Polarizabilities of Copper
Cluster Monocarbonyls Cu n CO (n = 2−13) and Selectivity of CO Adsorption on Copper
Clusters J. Phys. Chem. B 106 9649–54
[66] Guvelioglu G H, Ma P, He X, Forrey R C and Cheng H 2005 Evolution of Small
Copper Clusters and Dissociative Chemisorption of Hydrogen Phys. Rev. Lett. 94
026103
[67] Itoh M, Kumar V and Kawazoe Y 2005 GROWTH BEHAVIORS AND
ELECTRONIC STRUCTURES OF Na AND Cu NANOCLUSTERS: THE ROLE OF
sp–d HYBRIDIZATION Int. J. Mod. Phys. B 19 2421–6
[68] Li S, Alemany M M G and Chelikowsky J R 2006 Real space pseudopotential
calculations for copper clusters J. Chem. Phys. 125 034311
[69] Itoh M, Kumar V, Adschiri T and Kawazoe Y 2009 Comprehensive study of sodium,
copper, and silver clusters over a wide range of sizes 2≤ N ≤75 J. Chem. Phys. 131
174510
[70] Kahnouji H, Najafvandzadeh H, Hashemifar S J, Alaei M and Akbarzadeh H 2015
Density-functional study of the pure and palladium doped small copper and silver
clusters Chem. Phys. Lett. 630 101–5
[71] Li C-G, Shen Z-G, Hu Y-F, Tang Y-N, Chen W-G and Ren B-Z 2017 Insights into the
structures and electronic properties of Cu n+1μ and Cu n S μ (n = 1–12; μ = 0, ±1) clusters
Sci Rep 7 1345
[72] Chaves A S, Piotrowski M J and Da Silva J L F 2017 Evolution of the structural,
energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30
TM n systems for n = 2–15): a density functional theory investigation Phys. Chem.
Chem. Phys. 19 15484–502
[73] Massobrio C, Pasquarello A and Car R 1995 Structural and electronic properties of
small copper clusters: a first principles study Chem. Phys. Lett. 238 215–21
[74] Yang M, Jackson K A, Koehler C, Frauenheim T and Jellinek J 2006 Structure and
shape variations in intermediate-size copper clusters J. Chem. Phys. 124 024308
[75] Lecoultre S, Rydlo A, Félix C, Buttet J, Gilb S and Harbich W 2011 Optical absorption
of small copper clusters in neon: Cu n , (n = 1–9) J. Chem. Phys. 134 074303
[76] Calaminici P, Köster A M and Gómez-Sandoval Z 2007 Density Functional Study of
the Structure and Properties of Cu 9 and Cu 9− J. Chem. Theory Comput. 3 905–13
[77] Guzmán-Ramírez G, Aguilera-Granja F and Robles J 2010 DFT and GEGA genetic
algorithm optimized structures of Cu nν (ν=±1,0,2; n=3-13) clusters Eur. Phys. J. D 57
49–60
[78] Erkoç Ş and Shaltaf R 1999 Monte Carlo computer simulation of copper clusters Phys.
Rev. A 60 3053–7
[79] Darby S, Mortimer-Jones T V, Johnston R L and Roberts C 2002 Theoretical study of
Cu–Au nanoalloy clusters using a genetic algorithm J. Chem. Phys. 116 1536–50
[80] Kabir M, Mookerjee A and Bhattacharya A K 2004 Structure and stability of copper
clusters: A tight-binding molecular dynamics study Phys. Rev. A 69 043203
[81] Kabir M, Mookerjee A and Bhattacharya A K 2004 Copper clusters: electronic effect
dominates over geometric effect Eur. Phys. J. D 31 477–85
[82] Allen R J, Warren P B and ten Wolde P R 2005 Sampling Rare Switching Events in
Biochemical Networks Phys. Rev. Lett. 94 018104
[83] Hussain S and Haji-Akbari A 2020 Studying rare events using forward-flux sampling:
Recent breakthroughs and future outlook J. Chem. Phys. 152 060901
[84] Garzón I L and Jellinek J 1991 Melting of gold microclusters Z. Phys. D. 20 235–8
[85] Jellinek J and Garzón I L 1991 Structural and dynamical properties of transition metal
clusters Z. Phys. D. 20 239–42
[86] Zewail A H 2000 Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond J.
Phys. Chem. A 104 5660–94
[87] Jackson K A 1993 First-principles study of the structural and electronic properties of
Cu clusters Phys. Rev. B 47 9715–22
[88] Calaminici P, Janetzko F, Köster A M, Mejia-Olvera R and Zuniga-Gutierrez B 2007
Density functional theory optimized basis sets for gradient corrected functionals: 3d
transition metal systems J. Chem. Phys. 126 044108
[89] Calaminici P, Köster A M, Russo N and Salahub D R 1996 A density functional study
of small copper clusters: Cu n (n ⩽ 5) J. Chem. Phys. 105 9546–56
[90] Massobrio C, Pasquarello A and Dal Corso A 1998 Structural and electronic properties
of small Cun clusters using generalized-gradient approximations within density
functional theory J. Chem. Phys. 109 6626–30
[91] Poater A, Duran M, Jaque P, Toro-Labbé A and Solà M 2006 Molecular Structure and
Bonding of Copper Cluster Monocarbonyls Cu n CO (n = 1−9) J. Phys. Chem. B 110
6526–36
[92] Assadollahzadeh B and Schwerdtfeger P 2009 A systematic search for minimum
structures of small gold clusters Au n (n = 2–20) and their electronic properties J. Chem.
Phys. 131 064306
[93] Kumar J, Thomas K G and Liz-Marzán L M 2016 Nanoscale chirality in metal and
semiconductor nanoparticles Chem. Commun. 52 12555–69
[94] Ma W, Xu L, de Moura A F, Wu X, Kuang H, Xu C and Kotov N A 2017 Chiral
Inorganic Nanostructures Chem. Rev. 117 8041–93
[95] Ben-Moshe A, Maoz B M, Govorov A O and Markovich G 2013 Chirality and
chiroptical effects in inorganic nanocrystal systems with plasmon and exciton
resonances Chem. Soc. Rev. 42 7028
[96] Schaaff T G, Knight G, Shafigullin M N, Borkman R F and Whetten R L 1998
Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound J.
Phys. Chem. B 102 10643–6
[97] Li Y, Yu D, Dai L, Urbas A and Li Q 2011 Organo-Soluble Chiral Thiol-Monolayer-
Protected Gold Nanorods Langmuir 27 98–103
[98] Häkkinen H 2012 The gold–sulfur interface at the nanoscale Nature Chem 4 443–55
[99] Gautier C and Bürgi T 2009 Chiral Gold Nanoparticles ChemPhysChem 10 483–92
[100] Knoppe S and Bürgi T 2014 Chirality in Thiolate-Protected Gold Clusters Acc. Chem.
Res. 47 1318–26
[101] Knoppe, S 2018 Chirality in Ligand-Stabilized Metal Clusters Encyclopedia of
Interfacial Chemistry (Oxford: Elsevier) pp 406–16
[102] Murray R W 2008 Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and
Nanopores Chem. Rev. 108 2688–720
[103] Han G, Ghosh P and Rotello V M 2007 Functionalized gold nanoparticles for drug
delivery Nanomedicine 2 113–23
[104] Shenhar R and Rotello V M 2003 Nanoparticles: Scaffolds and Building Blocks Acc.
Chem. Res. 36 549–61
[105] Knoppe S, Dolamic I and Bürgi T 2012 Racemization of a Chiral Nanoparticle
Evidences the Flexibility of the Gold–Thiolate Interface J. Am. Chem. Soc. 134 13114–
20
[106] Schaaff T G and Whetten R L 2000 Giant Gold−Glutathione Cluster Compounds:
Intense Optical Activity in Metal-Based Transitions J. Phys. Chem. B 104 2630–41
[107] Wu Z, Gayathri C, Gil R R and Jin R 2009 Probing the Structure and Charge State of
Glutathione-Capped Au 25 (SG) 18 Clusters by NMR and Mass Spectrometry J. Am.
Chem. Soc. 131 6535–42
[108] Zhou M, Tian S, Zeng C, Sfeir M Y, Wu Z and Jin R 2017 Ultrafast Relaxation
Dynamics of Au 38 (SC 2 H 4 Ph) 24 Nanoclusters and Effects of Structural Isomerism J.
Phys. Chem. C 121 10686–93
[109] Senanayake R D, Guidez E B, Neukirch A J, Prezhdo O V and Aikens C M 2018
Theoretical Investigation of Relaxation Dynamics in Au 38 (SH) 24 Thiolate-Protected
Gold Nanoclusters J. Phys. Chem. C 122 16380–8
[110] Yang X, Shi M, Zhou R, Chen X and Chen H 2011 Blending of HAuCl 4 and histidine
in aqueous solution: a simple approach to the Au 10 cluster Nanoscale 3 2596
[111] Trapani M, Castriciano M A, Romeo A, De Luca G, Machado N, Howes B D,
Smulevich G and Scolaro L M 2019 Nanohybrid Assemblies of Porphyrin and Au 10
Cluster Nanoparticles Nanomaterials 9 1026
[112] Lopez N and Nørskov J K 2002 Catalytic CO Oxidation by a Gold Nanoparticle: A
Density Functional Study J. Am. Chem. Soc. 124 11262–3
[113] Lopez N, Janssens T, Clausen B, Xu Y, Mavrikakis M, Bligaard T and Nørskov J 2004
On the origin of the catalytic activity of gold nanoparticles for low-temperature CO
oxidation Journal of Catalysis 223 232–5
[114] Remediakis I N, Lopez N and Nørskov J K 2005 CO Oxidation on Rutile-Supported
Au Nanoparticles Angewandte Chemie International Edition 44 1824–6
[115] Remediakis I N, Lopez N and Nørskov J K 2005 CO oxidation on gold nanoparticles:
Theoretical studies Applied Catalysis A: General 291 13–20
[116] Wang Y-G, Mei D, Glezakou V-A, Li J and Rousseau R 2015 Dynamic formation of
single-atom catalytic active sites on ceria-supported gold nanoparticles Nat Commun 6
6511
[117] Li H, Pei Y and Zeng X C 2010 Two-dimensional to three-dimensional structural
transition of gold cluster Au 10 during soft landing on TiO 2 surface and its effect on CO
oxidation J. Chem. Phys. 133 134707
[118] Johansson M P, Warnke I, Le A and Furche F 2014 At What Size Do Neutral Gold
Clusters Turn Three-Dimensional? J. Phys. Chem. C 118 29370–7
[119] Goldsmith B R, Florian J, Liu J-X, Gruene P, Lyon J T, Rayner D M, Fielicke A,
Scheffler M and Ghiringhelli L M 2019 Two-to-three dimensional transition in neutral
gold clusters: The crucial role of van der Waals interactions and temperature Phys. Rev.
Mater. 3 016002
[120] Kryachko E S and Remacle F 2007 The magic gold cluster Au 20 Int. J. Quantum Chem.
107 2922–34
[121] Molina B, Soto J R and Calles A 2008 DFT normal modes of vibration of the Au 20
cluster Rev. Mex. Fís. 54 314–8
[122] Mullins S-M, Weissker H-Ch, Sinha-Roy R, Pelayo J J, Garzón I L, Whetten R L and
López-Lozano X 2018 Chiral symmetry breaking yields the I-Au 60 perfect golden shell
of singular rigidity Nat Commun 9 3352
[123] Sauceda H E, Salazar F, Pérez L A and Garzón I L 2013 Size and Shape Dependence of
the Vibrational Spectrum and Low-Temperature Specific Heat of Au Nanoparticles J.
Phys. Chem. C 117 25160–8
[124] Cuny J, Tarrat N, Spiegelman F, Huguenot A and Rapacioli M 2018 Density-functional
tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application
to silver and gold J. Phys.: Condens. Matter 30 303001
[125] Seifert G and Schmidt R 1992 Molecular dynamics and trajectory calculations : the
application of an LCAO-LDA scheme for simulations of cluster-cluster collisions New
J. Chem. 16 1145–7
[126] Porezag D, Frauenheim Th, Köhler Th, Seifert G and Kaschner R 1995 Construction
of tight-binding-like potentials on the basis of density-functional theory: Application to
carbon Phys. Rev. B 51 12947–57
[127] Frauenheim Th, Seifert G, Elsterner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S
and Scholz R 2000 A Self-Consistent Charge Density-Functional Based Tight-Binding
Method for Predictive Materials Simulations in Physics, Chemistry and Biology Phys.
Stat. Sol. (b) 217 41–62
[128] Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M,
Hajnal Z, Di Carlo A and Suhai S 2002 Atomistic simulations of complex materials:
ground-state and excited-state properties J. Phys.: Condens. Matter 14 3015–47
[129] Oliveira A F, Seifert G, Heine T and Duarte H A 2009 Density-functional based tight-
binding: an approximate DFT method J. Braz. Chem. Soc. 20 1193–205
[130] Koskinen P, Häkkinen H, Seifert G, Sanna S, Frauenheim T and Moseler M 2006
Density-functional based tight-binding study of small gold clusters New J. Phys. 8 9
[131] Koskinen P and Mäkinen V 2009 Density-functional tight-binding for beginners
Comput. Mater. Sci. 47 237–53
[132] Mäkinen V, Koskinen P and Häkkinen H 2013 Modeling thiolate-protected gold
clusters with density-functional tight-binding Eur. Phys. J. D 67 38
[133] Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A and
Rapacioli M 2020 Density-functional tight-binding: basic concepts and applications to
molecules and clusters Adv. Phys.: X 5 1710252
[134] Johnston R L 2003 Evolving better nanoparticles: Genetic algorithms for optimising
cluster geometries Dalton Trans. 4193
[135] Mitchel M 1996 An Introduction to Genetic Algorithms (MIT Press: Cambridge, MA)
[136] Vargas A, Santarossa G, Iannuzzi M and Baiker A 2009 Fluxionality of gold
nanoparticles investigated by Born-Oppenheimer molecular dynamics Phys. Rev. B 80
195421
[137] Garzón I L, Reyes-Nava J A, Rodríguez-Hernández J I, Sigal I, Beltrán M R and
Michaelian K 2002 Chirality in bare and passivated gold nanoclusters Phys. Rev. B 66
073403
[138] Lechtken A, Schooss D, Stairs J R, Blom M N, Furche F, Morgner N, Kostko O, von
Issendorff B and Kappes M M 2007 Au 34− : A Chiral Gold Cluster? Angew. Chem. Int.
Ed. 46 2944–8
[139] Santizo I E, Hidalgo F, Pérez L A, Noguez C and Garzón I L 2008 Intrinsic Chirality in
Bare Gold Nanoclusters: The Au 34− Case J. Phys. Chem. C 112 17533–9
[140] Qian H, Eckenhoff W T, Zhu Y, Pintauer T and Jin R 2010 Total Structure
Determination of Thiolate-Protected Au 38 Nanoparticles J. Am. Chem. Soc. 132 8280–1
[141] Tlahuice-Flores A, Whetten R L and Jose-Yacaman M 2013 Vibrational Normal Modes
of Small Thiolate-Protected Gold Clusters J. Phys. Chem. C 117 12191–8
[142] Maioli P, Stoll T, Sauceda H E, Valencia I, Demessence A, Bertorelle F, Crut A, Vallée
F, Garzón I L, Cerullo G and Del Fatti N 2018 Mechanical Vibrations of Atomically
Defined Metal Clusters: From Nano- to Molecular-Size Oscillators Nano Lett. 18
6842–9
[143] Malola S and Häkkinen H 2019 Chiral Inversion of Thiolate-Protected Gold
Nanoclusters via Core Reconstruction without Breaking a Au–S Bond J. Am. Chem.
Soc. 141 6006–12
[144] Fiorin G, Klein M L and Hénin J 2013 Using collective variables to drive molecular
dynamics simulations Mol. Phys. 111 3345–62
[145] Fihey A, Hettich C, Touzeau J, Maurel F, Perrier A, Köhler C, Aradi B and Frauenheim
T 2015 SCC-DFTB parameters for simulating hybrid gold-thiolates compounds J.
Comput. Chem. 36 2075–87
[146] Perdew J P, Burke K and Ernzerhof M 1996 Generalized Gradient Approximation
Made Simple Phys. Rev. Lett. 77 3865–8
[147] Perdew J P, Burke K and Ernzerhof M 1997 Generalized Gradient Approximation
Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] Phys. Rev. Lett. 78 1396–1396
[148] Allen R J, Frenkel D and ten Wolde P R 2006 Simulating rare events in equilibrium or
nonequilibrium stochastic systems J. Chem. Phys. 124 024102
[149] Box G E P, Jenkins G M, Reinsel G C and Ljung G M 2015 Time Series Analysis:
Forecasting and Control, 5th ed (John Wiley & Sons)
[150] Vishwanathan K 2017 Symmetry of Gold Neutral Clusters Au 3-20 and Normal Modes of
Vibrations by using the Numerical Finite Difference Method with Density-Functional
Tight-Binding(DFTB) Approach Arch Chem Res 02
[151] Dong Y and Springborg M 2007 Global structure optimization study on Au 2-20 Eur.
Phys. J. D 43 15–8
[152] Van den Bossche M 2019 DFTB-Assisted Global Structure Optimization of 13- and
55-Atom Late Transition Metal Clusters J. Phys. Chem. A 123 3038–45
[153] Lopez-Acevedo O, Akola J, Whetten R L, Grönbeck H and Häkkinen H 2009 Structure
and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au 144 (SR) 60 J. Phys.
Chem. C 113 5035–8
[154] Yan N, Xia N, Liao L, Zhu M, Jin F, Jin R and Wu Z 2018 Unraveling the long-
pursued Au 144 structure by x-ray crystallography Sci. Adv. 4 eaat7259
[155] Gu X, Bulusu S, Li X, Zeng X C, Li J, Gong X G and Wang L-S 2007 Au 34− : A
Fluxional Core−Shell Cluster J. Phys. Chem. C 111 8228–32
[156] Pyykkö P 2004 Theoretical Chemistry of Gold Angew. Chem. Int. Ed. 43 4412–56
[157] Pyykkö P 2008 Theoretical chemistry of gold. III Chem. Soc. Rev. 37 1967
[158] Gorin D J and Toste F D 2007 Relativistic effects in homogeneous gold catalysis
Nature 446 395–403
[159] Häkkinen H 2008 Atomic and electronic structure of gold clusters: understanding
flakes, cages and superatoms from simple concepts Chem. Soc. Rev. 37 1847
[160] Zhang J, Sasaki K, Sutter E and Adzic R R 2007 Stabilization of Platinum Oxygen-
Reduction Electrocatalysts Using Gold Clusters Science 315 220–2
[161] Turner M, Golovko V B, Vaughan O P H, Abdulkin P, Berenguer-Murcia A, Tikhov M
S, Johnson B F G and Lambert R M 2008 Selective oxidation with dioxygen by gold
nanoparticle catalysts derived from 55-atom clusters Nature 454 981–3
[162] Oliver-Meseguer J, Cabrero-Antonino J R, Domínguez I, Leyva-Pérez A and Corma A
2012 Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 10 7
at Room Temperature Science 338 1452–5
[163] Schmidbaur H and Schier A 2012 Aurophilic interactions as a subject of current
research: an up-date Chem. Soc. Rev. 41 370–412
[164] Kepp K P 2016 A Quantitative Scale of Oxophilicity and Thiophilicity Inorg. Chem. 55
9461–70
[165] Wang B, Yin S, Wang G, Buldum A and Zhao J 2001 Novel Structures and Properties
of Gold Nanowires Phys. Rev. Lett. 86 2046–9
[166] Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A
M, Arrio M-A, Cornia A, Gatteschi D and Sessoli R 2009 Magnetic memory of a
single-molecule quantum magnet wired to a gold surface Nature Mater 8 194–7
[167] Gautier C and Bürgi T 2008 Chiral Metal Surfaces and Nanoparticles Chimia 62 465
[168] Baiker A 1997 Progress in asymmetric heterogeneous catalysis: Design of novel
chirally modified platinum metal catalysts J. Mol. Catal. A 115 473–93
[169] Wells P B and Wilkinson A G 1998 Platinum group metals as heterogeneous
enantioselective catalysts Top. Catal. 5 39–50
[170] Liu J, Chen L, Cui H, Zhang J, Zhang L and Su C-Y 2014 Applications of metal–
organic frameworks in heterogeneous supramolecular catalysis Chem. Soc. Rev. 43
6011–61
[171] El-Sepelgy O, Haseloff S, Alamsetti S K and Schneider C 2014 Brønsted Acid
Catalyzed, Conjugate Addition of β-Dicarbonyls to In Situ Generated ortho-Quinone
Methides-Enantioselective Synthesis of 4-Aryl-4 H-Chromenes Angew. Chem. Int. Ed.
53 7923–7
[172] Olesiak-Banska J, Waszkielewicz M and Samoc M 2018 Two-photon chiro-optical
properties of gold Au 25 nanoclusters Phys. Chem. Chem. Phys. 20 24523–6
[173] Swasey S M, Karimova N, Aikens C M, Schultz D E, Simon A J and Gwinn E G 2014
Chiral Electronic Transitions in Fluorescent Silver Clusters Stabilized by DNA ACS
Nano 8 6883–92
[174] Wei J J, Schafmeister C, Bird G, Paul A, Naaman R and Waldeck D H 2006 Molecular
Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers J. Phys.
Chem. B 110 1301–8
[175] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S
and Wegener M 2009 Gold Helix Photonic Metamaterial as Broadband Circular
Polarizer Science 325 1513–5
[176] Dreaden E C, Alkilany A M, Huang X, Murphy C J and El-Sayed M A 2012 The
golden age: gold nanoparticles for biomedicine Chem. Soc. Rev. 41 2740–79
[177] Das M, Shim K H, An S S A and Yi D K 2011 Review on gold nanoparticles and their
applications Toxicol. Environ. Health Sci. 3 193–205
[178] Lim C C and Lai S K Molecular dynamics simulation of chiral cluster Au 10 and the use
of reaction coordinate to unravel its enantiomeric transition
[179] Goldsmith M-R, George C B, Zuber G, Naaman R, Waldeck D H, Wipf P and Beratan
D N 2006 The chiroptical signature of achiral metal clusters induced by dissymmetric
adsorbates Phys. Chem. Chem. Phys. 8 63–7
[180] Humblot V, Haq S, Muryn C, Hofer W A and Raval R 2002 From Local Adsorption
Stresses to Chiral Surfaces: (R,R)-Tartaric Acid on Ni(110) J. Am. Chem. Soc. 124 503–
10
[181] Yao H, Fukui T and Kimura K 2007 Chiroptical Responses of D -/ L -Penicillamine-
Capped Gold Clusters under Perturbations of Temperature Change and Phase Transfer
J. Phys. Chem. C 111 14968–76
[182] Gautier C and Bürgi T 2006 Chiral N -Isobutyryl-cysteine Protected Gold
Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV−vis and
Infrared J. Am. Chem. Soc. 128 11079–87
[183] Gautier C and Bürgi T 2008 Chiral Inversion of Gold Nanoparticles J. Am. Chem. Soc.
130 7077–84
[184] Noguez C and Garzón I L 2009 Optically active metal nanoparticles Chem. Soc. Rev.
38 757
[185] Bussi G and Laio A 2020 Using metadynamics to explore complex free-energy
landscapes Nat Rev Phys 2 200–12
[186] E W, Ren W and Vanden-Eijnden E 2005 Finite Temperature String Method for the
Study of Rare Events J. Phys. Chem. B 109 6688–93
[187] Chandler D 1978 Statistical mechanics of isomerization dynamics in liquids and the
transition state approximation J. Chem. Phys. 68 2959
[188] van Erp T S, Moroni D and Bolhuis P G 2003 A novel path sampling method for the
calculation of rate constants J. Chem. Phys. 118 7762–74
[189] Barnett R N and Landman U 1993 Born-Oppenheimer molecular-dynamics
simulations of finite systems: Structure and dynamics of (H 2 O) 2 Phys. Rev. B 48 2081–
97
[190] Kühne T D 2014 Second generation Car-Parrinello molecular dynamics WIREs
Comput. Mol. Sci. 4 391–406
[191] Ashcroft N W and Stroud D 1978 Theory of the Thermodynamics of Simple Liquid
Metals Solid State Physics vol 33, ed H Ehrenreich, F Seitz and D Turnbull (Academic
Press) pp 1–81
[192] Evans R 1978 Microscopic Structure and Dynamics of Liquids ed J Dupuy and AJ
Dianoux
[193] Lai S K 1988 Accurate calculation of the Helmholtz free energy for simple liquid
metals Phys. Rev. A 38 5707–13
[194] Schwerdtfeger P 2003 Gold Goes Nano—From Small Clusters to Low-Dimensional
Assemblies Angew. Chem. Int. Ed. 42 1892–5
[195] Daniel M-C and Astruc D 2004 Gold Nanoparticles: Assembly, Supramolecular
Chemistry, Quantum-Size-Related Properties, and Applications toward Biology,
Catalysis, and Nanotechnology Chem. Rev. 104 293–346
[196] Saha K, Agasti S S, Kim C, Li X and Rotello V M 2012 Gold Nanoparticles in
Chemical and Biological Sensing Chem. Rev. 112 2739–79
[197] Teles J H, Brode S and Chabanas M 1998 Cationic Gold(I) Complexes: Highly
Efficient Catalysts for the Addition of Alcohols to Alkynes Angew. Chem. Int. Ed. 37
1415–8
[198] Veenboer R M P, Dupuy S and Nolan S P 2015 Stereoselective Gold(I)-Catalyzed
Intermolecular Hydroalkoxlation of Alkynes ACS Catal. 5 1330–4
[199] Rudolph M and Hashmi A S K 2011 Heterocycles from gold catalysis Chem. Commun.
47 6536–44
[200] Ma Z and Dai S 2011 Development of novel supported gold catalysts: A materials
perspective Nano Res. 4 3–32
[201] Austin L A, Mackey M A, Dreaden E C and El-Sayed M A 2014 The optical,
photothermal, and facile surface chemical properties of gold and silver nanoparticles in
biodiagnostics, therapy, and drug delivery Arch. Toxicol. 88 1391–417
[202] Jiang W, Gao Y, Xu D, Liu F and Wang Z 2017 Structural Influence on Superatomic
Orbitals of Typical Gold Nanostructure Building Blocks J. Electron. Mater. 46 3938–41
[203] Fa W, Luo C and Dong J 2005 Bulk fragment and tubelike structures of Au N (N =
2−26) Phys. Rev. B 72 205428
[204] Walker A V 2005 Structure and energetics of small gold nanoclusters and their positive
ions J. Chem. Phys. 122 094310
[205] Xiao L, Tollberg B, Hu X and Wang L 2006 Structural study of gold clusters J. Chem.
Phys. 124 114309
[206] Li X-B, Wang H-Y, Yang X-D, Zhu Z-H and Tang Y-J 2007 Size dependence of the
structures and energetic and electronic properties of gold clusters J. Chem. Phys. 126
084505
[207] Idrobo J C, Walkosz W, Yip S F, Öğüt S, Wang J and Jellinek J 2007 Static
polarizabilities and optical absorption spectra of gold clusters (Au n , n = 2–14 and 20)
from first principles Phys. Rev. B 76 205422
[208] Zanti G and Peeters D 2010 DFT Study of Bimetallic Palladium−Gold Clusters Pd n
Au m of Low Nuclearities (n + m ≤ 14) J. Phys. Chem. A 114 10345–56
[209] Fernández E M and Balbás L C 2011 GGA versus van der Waals density functional
results for mixed gold/mercury molecules and pure Au and Hg cluster properties Phys.
Chem. Chem. Phys. 13 20863–70
[210] Götz D A, Schäfer R and Schwerdtfeger P 2013 The performance of density functional
and wavefunction-based methods for 2D and 3D structures of Au 10 J. Comput. Chem.
34 1975–81
[211] Shayeghi A, Götz D, Davis J B A, Schäfer R and Johnston R L 2015 Pool-BCGA: a
parallelised generation-free genetic algorithm for the ab initio global optimisation of
nanoalloy clusters Phys. Chem. Chem. Phys. 17 2104–12
[212] Kinaci A, Narayanan B, Sen F G, Davis M J, Gray S K, Sankaranarayanan S K R S
and Chan M K Y 2016 Unraveling the Planar-Globular Transition in Gold Nanoclusters
through Evolutionary Search Sci. Rep. 6 34974
[213] Nhat P V, Si N T, Leszczynski J and Nguyen M T 2017 Another look at structure of
gold clusters Aun from perspective of phenomenological shell model Chem. Phys. 493
140–8
[214] Wu P, Liu Q and Chen G 2019 Nonlocal effects on the structural transition of gold
clusters from planar to three-dimensional geometries RSC Adv. 9 20989–99
[215] Khatun M, Majumdar R S and Anoop A 2019 A Global Optimizer for Nanoclusters
Front. Chem. 7 644
[216] Persaud R R, Chen M and Dixon D A 2020 Prediction of Structures and Atomization
Energies of Coinage Metals, (M) n , n < 20: Extrapolation of Normalized Clustering
Energies to Predict the Cohesive Energy J. Phys. Chem. A 124 1775–86
[217] Nhat P V, Si N T, Anh N N K, Duong L V and Nguyen M T 2022 The Au 12 Gold
Cluster: Preference for a Non-Planar Structure Symmetry 14 1665
[218] Nhat P V, Si N T, Hang N T N and Nguyen M T 2022 The lowest-energy structure of
the gold cluster Au 10 : planar vs. nonplanar? Phys. Chem. Chem. Phys. 24 42–7
[219] Pyykko P 1988 Relativistic effects in structural chemistry Chem. Rev. 88 563–94
[220] Häkkinen H, Moseler M and Landman U 2002 Bonding in Cu, Ag, and Au Clusters:
Relativistic Effects, Trends, and Surprises Phys. Rev. Lett. 89 033401
[221] Gruene P, Rayner D M, Redlich B, van der Meer A F G, Lyon J T, Meijer G and
Fielicke A 2008 Structures of Neutral Au 7 , Au 19 , and Au 20 Clusters in the Gas Phase
Science 321 674–6
[222] Ghiringhelli L M, Gruene P, Lyon J T, Rayner D M, Meijer G, Fielicke A and Scheffler
M 2013 Not so loosely bound rare gas atoms: finite-temperature vibrational fingerprints
of neutral gold-cluster complexes New J. Phys. 15 083003
[223] Gruene P, Butschke B, Lyon J T, Rayner D M and Fielicke A 2014 Far-IR Spectra of
Small Neutral Gold Clusters in the Gas Phase Z. Phys. Chem. 228 337–50
[224] Lecoultre S, Rydlo A, Félix C, Buttet J, Gilb S and Harbich W 2011 UV–visible
absorption of small gold clusters in neon: Au n (n = 1–5 and 7–9) J. Chem. Phys. 134
074302
[225] Li X-T, Xu S-G, Yang X-B and Zhao Y-J 2020 Energy landscape of Au 13 : a global view
of structure transformation Phys. Chem. Chem. Phys. 22 4402–6
[226] Henkelman G and Jónsson H 2000 Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points J. Chem. Phys. 113
9978–85
[227] Beret E C, Ghiringhelli L M and Scheffler M 2011 Free gold clusters: beyond the
static, monostructure description Faraday Discuss. 152 153–67
[228] Rapacioli M, Schön J C and Tarrat N 2021 Exploring energy landscapes at the DFTB
quantum level using the threshold algorithm: the case of the anionic metal cluster Au 20–
Theor. Chem. Acc. 140 85
[229] Gaus M, Cui Q and Elstner M 2011 DFTB3: Extension of the Self-Consistent-Charge
Density-Functional Tight-Binding Method (SCC-DFTB) J. Chem. Theory Comput. 7
931–48
[230] Mitchell I, Aradi B and Page A J 2018 Density functional tight binding ‐ based free
energy simulations in the DFTB+ program J. Comput. Chem. 39 2452–8
[231] Rincon L, Hasmy A, Marquez M and Gonzalez C 2011 A perturbatively corrected
tight-binding method with hybridization: Application to gold nanoparticles Chem. Phys.
Lett. 503 171–5
[232] Idrobo J C, Walkosz W, Yip S F, Öğüt S, Wang J and Jellinek J 2008 Erratum: Static
polarizabilities and optical absorption spectra of gold clusters ( Au n , n = 2 − 14 and
20) from first principles [Phys. Rev. B 76 , 205422 (2007)] Phys. Rev. B 77 249903
[233] Zanti G and Peeters D 2013 Electronic structure analysis of small gold clusters Au m (m
≤ 16) by density functional theory Theor. Chem. Acc. 132 1300
[234] Tao J, Perdew J P, Staroverov V N and Scuseria G E 2003 Climbing the Density
Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed
for Molecules and Solids Phys. Rev. Lett. 91 146401
[235] David J, Guerra D and Restrepo A 2012 Structure, stability and bonding in the 1 Au 10
clusters Chem. Phys. Lett. 539–540 64–9
[236] Lee H M, Ge M, Sahu B R, Tarakeshwar P and Kim K S 2003 Geometrical and
Electronic Structures of Gold, Silver, and Gold−Silver Binary Clusters: Origins of
Ductility of Gold and Gold−Silver Alloy Formation J. Phys. Chem. B 107 9994–10005
[237] Shirts M R and Chodera J D 2008 Statistically optimal analysis of samples from
multiple equilibrium states J. Chem. Phys. 129 124105
指導教授 賴山強(San-Kiong Lai) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明