博碩士論文 107282605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.191.234.106
姓名 拉達(Radha Raman)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二維材料連接模板電化學
(2D Materials Junction-Templated Electrochemistry)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-26以後開放)
摘要(中) 二維材料(2D)之間的結構形成了一類新型的奈米結構,能在電子結構上實現

突變,為先進的電化學應用提供了獨特的機會。這些結構中的銳利界面可以創造局部

電子態和強電場,使其在很多領域都有應用的潛力。

本論文探討了兩個主要領域:橫向石墨烯p-n 結構在電鍍中的應用以及提高二硫
化鉬(MoS2)同質結構的光催化活性。

在第一部分中,橫向石墨烯p-n 結構被用來在電化學過程中實現高空間分辨率和

動態可控性。通過自下而上的結構形成技術,實現了奈米級精度的奈米顆粒沉積,從

而創造了複雜的分層材料,如對齊的一維碎形。這些碎形可作為新型的表面增強拉曼

光譜(SERS)基材。除此之外,通過電沉積連接任意點的一維奈米結構並調整其強度

和方向,展示了反應範圍的動態可調性,支持類軸突的互聯神經元的生長,用於先進

的神經形態電路。

在第二部分,我們探討了MoS2 在催化和可持續能源轉換中的應用,儘管其基面

在電化學反應中為惰性。我們引入了一種技術: 通過溫和的紫外線照射優先活化其埋藏

的晶界(GB),顯著增強了GB 的活性,使其達到MoS2 邊緣的催化性能。這一增強通

過選擇性光沉積和微電化學氫析出反應(HER)測量得到證實。通過光譜分析和第一

原理模擬計算,我們發現GB 處的替位氧官能化是這種催化增強的原因,此機制能令活

性提高一個數量級。

本論文展示了2D 材料結構在奈米技術、能源儲存和可持續能源解決方案中的巨

大潛力,為高性能光催化劑和先進電化學設備鋪平了道路。
摘要(英) Junctions between two-dimensional (2D) materials form a new class of nanostructures
that enable abrupt transitions in electronic structure, providing unique opportunities for
advanced electrochemical applications. These sharp interfaces create localized electronic states
and strong electric fields, enhancing their functional capabilities.

This thesis explores two primary areas: the application of lateral graphene p-n junctions
for electrodeposition and the enhancement of photocatalytic activity in molybdenum disulfide
(MoS2) homojunctions.

In the first part, lateral graphene p-n junctions are employed to achieve high spatial
resolution and dynamic controllability in electrochemical processes. A bottom-up junction
formation technique enables sub-nanometer precision in nanoparticle deposition, facilitating
the creation of complex hierarchical materials such as aligned one-dimensional fractals. These
fractals serve as novel substrates for surface-enhanced Raman spectroscopy (SERS).
Additionally, dynamic tunability is demonstrated by depositing one-dimensional nanostructures
that connect arbitrary points with adjustable strength and orientation, supporting axon-like
growth of interconnected neurons for advanced neuromorphic circuits.

In the second part, MoS2 is investigated for catalysis and sustainable energy conversion,
despite the inertness of its basal plane. This study introduces a technique to enhance the catalytic
activity of continuous MoS2 films by preferentially activating buried grain boundaries (GBs)
through mild UV irradiation, significantly boosting GB activity to match the catalytic
performance of MoS2 edges. This enhancement is confirmed through site-selective
photodeposition and micro-electrochemical hydrogen evolution reaction measurements.
Spectroscopic analysis and ab-initio simulations reveal that substitutional oxygen functionalization at the GBs drives this catalytic enhancement, increasing activity by an order
of magnitude.

This thesis demonstrates the transformative potential of 2D material junctions in
nanotechnology, energy storage, and sustainable energy solutions, paving the way for high-
performance photocatalysts and advanced electrochemical devices.
關鍵字(中) ★ 二維材料
★ 晶界
★ 橫向界面
★ 電化學
★ 析氫反應
關鍵字(英) ★ 2D Materials
★ Grain Boundaries
★ Lateral Junctions
★ Electrochemistry
★ Hydrogen Evolution Reaction
論文目次 中文摘要 ..................................................................................................................................... i
Abstract ...................................................................................................................................... iii
Acknowledgements .................................................................................................................... v
Table of Contents ..................................................................................................................... vii
List of Figures ............................................................................................................................ xi
List of Tables ............................................................................................................................ xv
Thesis Overview ......................................................................................................................... 1
CHAPTER 1. INTRODUCTION .......................................................................................... 5
1-1. Background and Motivation ........................................................................................... 5
1-2. Research Objectives and Scope ...................................................................................... 6
1-2-1. Localized Electrodeposition at Graphene Junctions ........................................... 6
1-2-2. Enhanced Photocatalytic Activity at MoS2 Homojunctions ............................... 7
1-2-3. Significance of Research .................................................................................... 7
CHAPTER 2. LITERATURE REVIEW ............................................................................... 9
2-1. Introduction to 2D Materials .......................................................................................... 9
2-1-1. Historical Context and Significance of Graphene .............................................. 9
2-1-2. Emergence of other 2D Materials ..................................................................... 10
2-2. Properties of 2D materials ............................................................................................ 11
2-3. Junctions in 2D Materials ............................................................................................. 13
2-4. Electrostatics of Junctions in 2D Materials .................................................................. 14
2-4-1. Electrostatics of 2D p-n Junctions in Graphene and MoS2 .............................. 17
2-5. Implications of 2D Material’s Junction Enabled Electrochemistry.............................. 20
CHAPTER 3. EXPERIMENTAL METHODS ................................................................... 23
3-1. Materials and Methods ................................................................................................. 23
3-1-1. Synthesis of Graphene ...................................................................................... 23
3-1-2. Transfer of graphene ......................................................................................... 24
3-1-3. Synthesis of MoS2 ............................................................................................ 25
3-1-4. Oxygen Plasma Treatment ............................................................................... 26
3-1-5. UV Ozone Treatment........................................................................................ 28
3-2. Electrochemical Techniques ......................................................................................... 29
3-2-1. Electrodeposition Setup .................................................................................... 29
3-2-2. Three Electrode Electrochemical Measurement ............................................... 31
3-2-3. Device Fabrication for Electrochemical Measurements ................................... 32
3-2-4. HER Measurement ........................................................................................... 34
3-2-5. Electrochemical Impedance Spectroscopy (EIS) ............................................. 34
3-3. Materials characterization techniques .......................................................................... 35
3-3-1. Raman spectroscopy and PL Spectroscopy ...................................................... 35
3-3-2. Scanning Electron Microscopy ......................................................................... 37
3-3-3. X-ray Photoelectron Spectroscopy (XPS) Analysis ......................................... 38
3-3-4. Atomic Force Microscopy ................................................................................ 39
3-4. Density Function Theory Calculations ........................................................................ 41
CHAPTER 4. LOCALIZED ELECTRODEPOSITION AT GRAPHENE LATERAL
JUNCTIONS ................................................................................................................ 45
4-1. Introduction .................................................................................................................. 45
4-1-1. Background on 2D Materials and Electrochemistry ......................................... 45
4-1-2. Significance of Graphene Lateral Junctions ..................................................... 46
4-2. Experimental Methods ................................................................................................. 48
4-2-1. Synthesis of Graphene ...................................................................................... 48
4-2-2. Formation of Lateral Graphene p-n-Junctions .................................................. 48
4-2-3. Electrochemical Deposition Process ................................................................. 49
4-3. Results and Analysis .................................................................................................... 50
4-3-1. Localization of Electrochemical Reactions ....................................................... 50
4-3-2. Reversibility of junction formation ................................................................... 51
4-3-3. High-Resolution Localization of Electrochemical Reactions ........................... 52
4-3-4. Compatibility with Various Electrochemical Species ...................................... 54
4-4. Applications of Junction-Enabled Localization ........................................................... 56
4-4-1. Creation of Novel Nanostructures..................................................................... 56
4-4-2. Surface Enhanced Raman Spectroscopy on 1D fractal nanostructures ............ 57
4-4-3. Potential for Neuromorphic Circuits and interconnects .................................... 60
4-4-4. Encoding Message in Graphene ........................................................................ 62
4-5. Conclusion ................................................................................................................... 63
4-5-1. Future Prospects ................................................................................................ 64
4-5-2. Vision for the Integration of this Technique in Advanced Technological
Applications .................................................................................................................. 65
CHAPTER 5. MOS2 HOMOJUNCTION AT GRAIN BOUNDARY: EFFICIENT
PHOTOCATALYST FOR HYDROGEN EVOLUTION REACTION ...................... 67
5-1. Introduction .................................................................................................................. 67
5-1-1. Energy Technologies......................................................................................... 67
5-1-2. Overview of Hydrogen Evolution Reaction...................................................... 69
5-1-3. Challenges in MoS2 Catalysis ........................................................................... 72
5-2. Current Strategies to Enhance MoS2 Catalytic Activity .............................................. 73
5-3. Grain Boundaries in MoS2 ........................................................................................... 74
5-3-1. Formation of Grain Boundaries ........................................................................ 74
5-3-2. Properties of Grain Boundaries ......................................................................... 76
5-4. Statement of Problem ................................................................................................... 81
5-4-1. Probing Catalytic Active Sites in MoS2 ............................................................ 83
5-4-2. Selective Activation of MoS2 through Junction formation at GBs ................... 87
5-5. Experimental Techniques and Characterization .......................................................... 88
5-5-1. Electrochemical Measurements ........................................................................ 88
5-6. Mechanism discussion of Enhanced Catalytic Activity ............................................... 90
5-6-1. Spectroscopic Characterization ......................................................................... 90
5-7. Computational Studies ................................................................................................. 92
5-7-1. Density Functional Theory (DFT) Simulations ................................................ 92
5-7-2. Simulation Results and Interpretation .............................................................. 92
5-8. Photo-Electrocatalytic Performance ............................................................................. 93
5-8-1. Junction evaluation by Photoluminescence (PL) and Kelvin Probe Force
Microscopy (KPFM) .................................................................................................... 93
5-8-2. Performance Enhancement through Homojunctions ........................................ 98
5-9. Conclusion .................................................................................................................... 99
CHAPTER 6. CONCLUSIONS AND FUTURE WORK ................................................. 103
6-1. Future Directions ........................................................................................................ 104
REFERENCES ....................................................................................................................... 105
PUBLICATIONS ................................................................................................................... 119
LIST OF CONFERENCE PRESENTATIONS AND AWARDS ......................................... 121
參考文獻 1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science,
2004. 306(5696): p. 666-669.
2. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National
Academy of Sciences, 2005. 102(30): p. 10451-10453.
3. Pop, E., V. Varshney, and A.K. Roy, Thermal properties of graphene: Fundamentals
and applications. MRS bulletin, 2012. 37(12): p. 1273-1281.
4. Malekpour, H. and A.A. Balandin, Raman‐based technique for measuring thermal
conductivity of graphene and related materials. Journal of Raman Spectroscopy, 2018.
49(1): p. 106-120.
5. Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials.
npj 2D Materials and Applications, 2020. 4(1): p. 29.
6. Novoselov, K.S., et al., 2D materials and van der Waals heterostructures. Science,
2016. 353(6298): p. aac9439.
7. Pumera, M., Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for
electrochemical energy generation and storage. Journal of Materials Chemistry A,
2014. 2(24): p. 8981-8987.
8. Castellanos-Gomez, A., Black phosphorus: narrow gap, wide applications. The journal
of physical chemistry letters, 2015. 6(21): p. 4280-4291.
9. Deng, B., et al., Efficient electrical control of thin-film black phosphorus bandgap.
Nature communications, 2017. 8(1): p. 14474.
10. Niu, T. and A. Li, From two-dimensional materials to heterostructures. Progress in
Surface Science, 2015. 90(1): p. 21-45.
11. Lin, L., et al., Building graphene p–n junctions for next-generation photodetection.
Nano Today, 2015. 10(6): p. 701-716.
12. Pereira, J.M., et al., Klein tunneling in single and multiple barriers in graphene.
Semiconductor science and technology, 2010. 25(3): p. 033002.
13. Recher, P. and B. Trauzettel, Quantum dots and spin qubits in graphene.
Nanotechnology, 2010. 21(30): p. 302001.
14. Shytov, A., N. Gu, and L. Levitov, Transport in graphene pn junctions in magnetic
field. arXiv preprint arXiv:0708.3081, 2007.
15. Wang, G., et al., Seamless lateral graphene p–n junctions formed by selective in situ
doping for high-performance photodetectors. Nature Communications, 2018. 9(1): p.
5168.
16. Shifa, T.A., et al., Heterostructures based on 2D materials: a versatile platform for
efficient catalysis. Advanced Materials, 2019. 31(45): p. 1804828.
17. Velický, M. and P.S. Toth, From two-dimensional materials to their heterostructures:
An electrochemist′s perspective. Applied Materials Today, 2017. 8: p. 68-103.
18. Badami, D., X-Ray studies of graphite formed by decomposing silicon carbide. Carbon,
1965. 3(1): p. 53-57.
19. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route
toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 2004.
108(52): p. 19912-19916.
20. Iacopi, F., J.J. Boeckl, and C. Jagadish, 2D Materials. Vol. 95. 2016: Academic Press.
21. Laursen, A.B., et al., Molybdenum sulfides—efficient and viable materials for electro-
and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012.
5(2): p. 5577-5591.
22. Rahman, A., et al., Molybdenum disulfide-based nanomaterials for visible-light-induced
photocatalysis. ACS omega, 2022. 7(26): p. 22089-22110.
23. Merki, D. and X. Hu, Recent developments of molybdenum and tungsten sulfides as
hydrogen evolution catalysts. Energy & Environmental Science, 2011. 4(10): p. 3878-
3888.
24. Wang, J., et al., Miracle in “White”: Hexagonal Boron Nitride. Small, 2024: p.
2400489.
25. Acun, A., et al., Germanene: the germanium analogue of graphene. Journal of physics:
Condensed matter, 2015. 27(44): p. 443002.
26. Dávila, M., et al., Germanene: a novel two-dimensional germanium allotrope akin to
graphene and silicene. New Journal of Physics, 2014. 16(9): p. 095002.
27. Liu, H., J. Gao, and J. Zhao, Silicene on substrates: a way to preserve or tune its
electronic properties. The Journal of Physical Chemistry C, 2013. 117(20): p. 10353-
10359.
28. Kuang, P., et al., MXene-based photocatalysts. Journal of Materials Science &
Technology, 2020. 56: p. 18-44.
29. Zhan, X., et al., MXene and MXene-based composites: synthesis, properties and
environment-related applications. Nanoscale Horizons, 2020. 5(2): p. 235-258.
30. Guo, X., M. Baumgarten, and K. Müllen, Designing π-conjugated polymers for organic
electronics. Progress in Polymer Science, 2013. 38(12): p. 1832-1908.
31. Yano, S., et al., Amorphous 2D materials containing a conjugated-polymer network.
Communications Chemistry, 2019. 2(1): p. 97.
32. Dutta, T., et al., Electronic properties of 2D materials and their junctions. Nano
Materials Science, 2024. 6(1): p. 1-23.
33. Frisenda, R., et al., Atomically thin p–n junctions based on two-dimensional materials.
Chemical Society Reviews, 2018. 47(9): p. 3339-3358.
34. Allain, P.E. and J.-N. Fuchs, Klein tunneling in graphene: optics with massless
electrons. The European Physical Journal B, 2011. 83: p. 301-317.
35. Stander, N., B. Huard, and D. Goldhaber-Gordon, Evidence for Klein tunneling in
graphene p− n junctions. Physical review letters, 2009. 102(2): p. 026807.
36. Milovanović, S., D. Moldovan, and F. Peeters, Veselago lensing in graphene with a pn
junction: Classical versus quantum effects. Journal of Applied Physics, 2015. 118(15).
37. Reijnders, K. and M. Katsnelson, Diffraction catastrophes and semiclassical quantum
mechanics for Veselago lensing in graphene. Physical Review B, 2017. 96(4): p.
045305.
38. Kaushik, N., et al., Schottky barrier heights for Au and Pd contacts to MoS2. Applied
Physics Letters, 2014. 105(11).
39. Li, Y., et al., Interface effects of Schottky devices built from MoS2 and high work
function metals. Journal of Physics: Condensed Matter, 2022. 34(16): p. 165001.
40. Lv, L., et al., Design and tailoring of two-dimensional Schottky, PN and tunnelling
junctions for electronics and optoelectronics. Nanoscale, 2021. 13(14): p. 6713-6751.
41. Wu, J.-Y., et al., Electrical rectifying and photosensing property of Schottky diode based
on MoS2. ACS applied materials & interfaces, 2018. 10(29): p. 24613-24619.
42. You, J., et al., Contacting MoS2 to MXene: vanishing p-type Schottky barrier and
enhanced hydrogen evolution catalysis. The Journal of Physical Chemistry C, 2019.
123(6): p. 3719-3726.
43. Chen, D.-R., et al., Lateral two-dimensional material heterojunction photodetectors
with ultrahigh speed and detectivity. ACS applied materials & interfaces, 2019. 11(6):
p. 6384-6388.
44. Kitai, A., Principles of Solar Cells, LEDs and Diodes: The role of the PN junction.
2011: John Wiley & Sons.
45. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction
Transistors. Bell system technical journal, 1949. 28(3): p. 435-489.
46. Ilatikhameneh, H., et al., Dramatic impact of dimensionality on the electrostatics of PN
junctions and its sensing and switching applications. IEEE Transactions on
Nanotechnology, 2018. 17(2): p. 293-298.
47. Nipane, A., et al., Electrostatics of lateral pn junctions in atomically thin materials.
Journal of Applied Physics, 2017. 122(19).
48. Zheng, C., et al., Direct observation of 2D electrostatics and ohmic contacts in template-
grown graphene/WS2 heterostructures. ACS nano, 2017. 11(3): p. 2785-2793.
49. Yu, H., A. Kutana, and B.I. Yakobson, Carrier delocalization in two-dimensional
coplanar p–n junctions of graphene and metal dichalcogenides. Nano letters, 2016.
16(8): p. 5032-5036.
50. Kang, J., et al., Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p.
5527-5537.
51. Chen, Y.-S., et al., Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic
performance at multi-wafer scale. npj 2D Materials and Applications, 2022. 6(1): p. 54.
52. Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical methods: fundamentals and
applications. 2022: John Wiley & Sons.
53. Instruments, G., Application Notes: Potentiostat Primer.
54. Kissinger, P. and W.R. Heineman, Laboratory Techniques in Electroanalytical
Chemistry, revised and expanded. 2018: CRC press.
55. Muthu, J., et al., The HER performance of 2D materials is underestimated without
morphology correction. Chemical Engineering Journal, 2023. 465: p. 142852.
56. Dresselhaus, M., A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon
nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p.
89-108.
57. Andrade, J.D., X-ray photoelectron spectroscopy (XPS). Surface and Interfacial Aspects
of Biomedical Polymers: Volume 1 Surface Chemistry and Physics, 1985: p. 105-195.
58. Fadley, C.S., X-ray photoelectron spectroscopy: Progress and perspectives. Journal of
Electron Spectroscopy and Related Phenomena, 2010. 178: p. 2-32.
59. Smidstrup, S., et al., QuantumATK: An integrated platform of electronic and atomic-
scale modelling tools. Journal of Physics: Condensed Matter, 2019. 32(1): p. 015901.
60. Liu, Y., et al., Dielectrophoretic assembly of nanowires. The Journal of Physical
Chemistry B, 2006. 110(29): p. 14098-14106.
61. Ranjan, N., et al., Dielectrophoretic growth of metallic nanowires and microwires:
theory and experiments. Langmuir, 2010. 26(1): p. 552-559.
62. Vijayaraghavan, A., et al., Dielectrophoretic assembly of high-density arrays of
individual graphene devices for rapid screening. ACS nano, 2009. 3(7): p. 1729-1734.
63. Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
64. Memming, R., Semiconductor electrochemistry. 2015: John Wiley & Sons.
65. Achoyan, A.S., et al., Two-dimensional pn junction under equilibrium conditions.
Semiconductors, 2002. 36: p. 903-907.
66. Kim, Y.D., et al., Focused-laser-enabled p–n junctions in graphene field-effect
transistors. ACS nano, 2013. 7(7): p. 5850-5857.
67. Liu, N., et al., Large-area, transparent, and flexible infrared photodetector fabricated
using PN junctions formed by N-doping chemical vapor deposition grown graphene.
Nano letters, 2014. 14(7): p. 3702-3708.
68. Beenakker, C., Colloquium: Andreev reflection and Klein tunneling in graphene.
Reviews of Modern Physics, 2008. 80(4): p. 1337.
69. Cai, L., et al., Whispering gallery mode optical microresonators: structures and sensing
applications. physica status solidi (a), 2020. 217(6): p. 1900825.
70. Ryynänen, J., Graphene Transistors-Challenges and Opportunities. 2015.
71. Guo, B., et al., Graphene doping: a review. Insciences J., 2011. 1(2): p. 80-89.
72. Zhang, Y., et al., Lateral Graphene p–n Junctions Realized by Nanoscale Bipolar
Doping Using Surface Electric Dipoles and Self‐Organized Molecular Anions.
Advanced Materials Interfaces, 2019. 6(1): p. 1801380.
73. Zhou, X., et al., Atomic-scale characterization of graphene p–n junctions for electron-
optical applications. ACS nano, 2019. 13(2): p. 2558-2566.
74. Willke, P., et al., Doping of graphene by low-energy ion beam implantation: structural,
electronic, and transport properties. Nano letters, 2015. 15(8): p. 5110-5115.
75. Wu, X., et al., Doping of graphene using ion beam irradiation and the atomic
mechanism. Computational Materials Science, 2017. 129: p. 184-193.
76. Chen, T.-W., Y.-P. Hsieh, and M. Hofmann, Ad-layers enhance graphene′s
performance. RSC advances, 2015. 5(114): p. 93684-93688.
77. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper
foils. science, 2009. 324(5932): p. 1312-1314.
78. Deng, S. and V. Berry, Wrinkled, rippled and crumpled graphene: an overview of
formation mechanism, electronic properties, and applications. Materials Today, 2016.
19(4): p. 197-212.
79. Meng, L., et al., Hierarchy of graphene wrinkles induced by thermal strain engineering.
Applied Physics Letters, 2013. 103(25).
80. Wang, W., S. Yang, and A. Wang, Observation of the unexpected morphology of
graphene wrinkle on copper substrate. Scientific reports, 2017. 7(1): p. 8244.
81. Boukhvalov, D., et al., Charge transfer and weak bonding between molecular oxygen
and graphene zigzag edges at low temperatures. Carbon, 2016. 107: p. 800-810.
82. Hofmann, M., et al., Dopant morphology as the factor limiting graphene conductivity.
Scientific Reports, 2015. 5(1): p. 17393.
83. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-
gated graphene transistor. Nature nanotechnology, 2008. 3(4): p. 210-215.
84. Penner, R.M., Electrodeposition of nanostructures and microstructures on highly
oriented pyrolytic graphite (HOPG), in Handbook of Electrochemistry. 2007, Elsevier.
p. 661-677.
85. Schmickler, W. and E. Santos, Interfacial electrochemistry. 2010: Springer Science &
Business Media.
86. Penner, R.M., Mesoscopic metal particles and wires by electrodeposition. 2002, ACS
Publications. p. 3339-3353.
87. Tennant, D.M., Limits of conventional lithography, in Nanotechnology. 1999, Springer
New York New York, NY. p. 161-205.
88. Euler, J. and W. Nonnenmacher, Stromverteilung in porösen elektroden. Electrochimica
Acta, 1960. 2(4): p. 268-286.
89. Chang, K.-W., et al., Electrostatic control over the electrochemical reactivity of
graphene. Chemistry of Materials, 2018. 30(20): p. 7178-7182.
90. Zalka, D. and L. Péter, On the evolution and application of the concept of
electrochemical polarization. Journal of Solid State Electrochemistry, 2020. 24(11): p.
2595-2602.
91. Hirt, L., et al., Local surface modification via confined electrochemical deposition with
FluidFM. RSC advances, 2015. 5(103): p. 84517-84522.
92. Kock, M., V. Kirchner, and R. Schuster, Electrochemical micromachining with
ultrashort voltage pulses–a versatile method with lithographical precision.
Electrochimica acta, 2003. 48(20-22): p. 3213-3219.
93. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne, Surface-enhanced Raman
spectroscopy. 2005, ACS Publications.
94. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano
letters, 2010. 10(2): p. 553-561.
95. Wang, Y., et al., Gold on graphene as a substrate for surface enhanced Raman
scattering study. Applied Physics Letters, 2010. 97(16).
96. Sutrová, V., et al., Excitation wavelength dependence of combined surface-and
graphene-enhanced Raman scattering experienced by free-base phthalocyanine
localized on single-layer graphene-covered Ag nanoparticle arrays. The Journal of
Physical Chemistry C, 2018. 122(36): p. 20850-20860.
97. Yang, W., et al., Graphene-Ag nanoparticles-cicada wings hybrid system for obvious
SERS performance and DNA molecular detection. Optics express, 2019. 27(3): p. 3000-
3013.
98. Tzeng, Y., et al., Silver nanoparticles SERS sensors using rapid thermal CVD nanoscale
graphene islands as templates. IEEE Transactions on Nanotechnology, 2019. 19: p. 25-
33.
99. Aparicio-Martinez, E., I.A. Estrada-Moreno, and R.B. Dominguez, Evaluation of a
Laser Reduced Graphene Electrode Modified with Electrodeposited Silver
Nanoparticles for SERS Detection. ECS Transactions, 2021. 101(1): p. 3.
100. Rout, C.S., et al., Au nanoparticles on graphitic petal arrays for surface-enhanced
Raman spectroscopy. Applied Physics Letters, 2010. 97(13): p. 133108.
101. Du, Y., et al., Enhanced light–matter interaction of graphene–gold nanoparticle hybrid
films for high-performance SERS detection. Journal of Materials Chemistry C, 2014.
2(23): p. 4683-4691.
102. Ayhan, M.E., CVD graphene-based flexible and transparent SERS substrate towards
L-tyrosine detection. Microelectronic Engineering, 2021. 241: p. 111546.
103. Sun, H., H. Liu, and Y. Wu, A green, reusable SERS film with high sensitivity for in-
situ detection of thiram in apple juice. Applied Surface Science, 2017. 416: p. 704-709.
104. Widrow, B., Adaptive" adaline" Neuron Using Chemical" memistors.". 1960.
105. Borovkov, V., et al., Electrochemical Transducers. 1966, Moscow: Nauka.
106. Yao, P., et al., Fully hardware-implemented memristor convolutional neural network.
Nature, 2020. 577(7792): p. 641-646.
107. Pakkenberg, B., et al., Aging and the human neocortex. Experimental gerontology,
2003. 38(1-2): p. 95-99.
108. Ramos-Nuñez, A.I., et al., Static and dynamic measures of human brain connectivity
predict complementary aspects of human cognitive performance. Frontiers in human
neuroscience, 2017. 11: p. 420.
109. Omotade, O.F., S.L. Pollitt, and J.Q. Zheng, Actin-based growth cone motility and
guidance. Molecular and Cellular Neuroscience, 2017. 84: p. 4-10.
110. Slesazeck, S. and T. Mikolajick, Nanoscale resistive switching memory devices: a
review. Nanotechnology, 2019. 30(35): p. 352003.
111. Dresselhaus, M.S. and I. Thomas, Alternative energy technologies. Nature, 2001.
414(6861): p. 332-337.
112. Bureau of Energy, M.T., Energy Statistics Handbook. 2022.
113. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar
energy utilization. Proceedings of the National Academy of Sciences, 2006. 103(43): p.
15729-15735.
114. Crabtree, G.W., M.S. Dresselhaus, and M.V. Buchanan, The hydrogen economy.
Physics today, 2004. 57(12): p. 39-44.
115. Züttel, A., et al., Hydrogen: the future energy carrier. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923):
p. 3329-3342.
116. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p.
6446-6473.
117. Gomez, R., et al., Hydrogen evolution on platinum single crystal surfaces: effects of
irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on
platinum (100). The Journal of Physical Chemistry, 1993. 97(18): p. 4769-4776.
118. Nørskov, J.K., et al., Trends in the exchange current for hydrogen evolution. Journal of
The Electrochemical Society, 2005. 152(3): p. J23.
119. Huang, X., et al., Solution-phase epitaxial growth of noble metal nanostructures on
dispersible single-layer molybdenum disulfide nanosheets. Nature communications,
2013. 4(1): p. 1444.
120. Wang, T., et al., Enhanced electrocatalytic activity for hydrogen evolution reaction from
self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode.
Energy & Environmental Science, 2013. 6(2): p. 625-633.
121. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano
letters, 2013. 13(3): p. 1341-1347.
122. Li, G., et al., All the catalytic active sites of MoS2 for hydrogen evolution. Journal of
the American Chemical Society, 2016. 138(51): p. 16632-16638.
123. Li, H., et al., Activating and optimizing MoS2 basal planes for hydrogen evolution
through the formation of strained sulphur vacancies. Nature materials, 2016. 15(1): p.
48-53.
124. Ouyang, Y., et al., Activating inert basal planes of MoS2 for hydrogen evolution
reaction through the formation of different intrinsic defects. Chemistry of Materials,
2016. 28(12): p. 4390-4396.
125. Shen, P.-C., et al., Healing of donor defect states in monolayer molybdenum disulfide
using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022. 5(1):
p. 28-36.
126. Xu, J., et al., Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen
evolution. Nature communications, 2022. 13(1): p. 2193.
127. Ye, G., et al., Defects engineered monolayer MoS2 for improved hydrogen evolution
reaction. Nano letters, 2016. 16(2): p. 1097-1103.
128. Chen, D.-R., et al., Edge-dominated hydrogen evolution reactions in ultra-narrow MoS
2 nanoribbon arrays. Journal of Materials Chemistry A, 2023. 11(29): p. 15802-15810.
129. Huang, T.-X., et al., Probing the edge-related properties of atomically thin MoS2 at
nanoscale. Nature communications, 2019. 10(1): p. 5544.
130. Jaramillo, T.F., et al., Identification of active edge sites for electrochemical H2 evolution
from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
131. Wu, K., et al., Creating edge sites within the basal plane of a MoS2 catalyst for
substantially enhanced hydrodeoxygenation activity. ACS Catalysis, 2021. 12(1): p. 8-
17.
132. Luo, P., et al., Doping engineering and functionalization of two-dimensional metal
chalcogenides. Nanoscale Horizons, 2019. 4(1): p. 26-51.
133. Pető, J., et al., Spontaneous doping of the basal plane of MoS2 single layers through
oxygen substitution under ambient conditions. Nature chemistry, 2018. 10(12): p. 1246-
1251.
134. Shi, W. and Z. Wang, Effect of oxygen doping on the hydrogen evolution reaction in
MoS2 monolayer. Journal of the Taiwan Institute of Chemical Engineers, 2018. 82: p.
163-168.
135. Tang, J., et al., In situ oxygen doping of monolayer MoS2 for novel electronics. Small,
2020. 16(42): p. 2004276.
136. Van Der Zande, A.M., et al., Grains and grain boundaries in highly crystalline
monolayer molybdenum disulphide. Nature materials, 2013. 12(6): p. 554-561.
137. Chang, Y.-H., et al., Highly efficient electrocatalytic hydrogen production by MoSx
grown on graphene-protected 3D Ni foams. Advanced materials, 2013. 25(5): p. 756-
760.
138. Li, Y., et al., MoS2 nanoparticles grown on graphene: an advanced catalyst for the
hydrogen evolution reaction. Journal of the American Chemical Society, 2011. 133(19):
p. 7296-7299.
139. Rao, R., et al., Spectroscopic evaluation of charge-transfer doping and strain in
graphene/MoS 2 heterostructures. Physical Review B, 2019. 99(19): p. 195401.
140. Wang, N., et al., Effect of Functional Group Modifications on the Photocatalytic
Performance of g‐C3N4. Small, 2023. 19(27): p. 2300109.
141. Chen, S., et al., Revealing the grain boundary formation mechanism and kinetics during
polycrystalline MoS2 growth. ACS applied materials & interfaces, 2019. 11(49): p.
46090-46100.
142. Jiang, R., et al., Grain Boundary—A Route to Enhance Electrocatalytic Activity for
Hydrogen Evolution Reaction. Applied Sciences, 2022. 12(9): p. 4290.
143. Wang, S., et al., Origin of the Enhanced Hydrogen Evolution Reaction Activity of Grain
Boundaries in MoS2 Monolayers. The Journal of Physical Chemistry C, 2022. 126(14):
p. 6215-6222.
144. He, Y., et al., Engineering grain boundaries at the 2D limit for the hydrogen evolution
reaction. Nature communications, 2020. 11(1): p. 57.
145. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic
patchwork quilts. Nature, 2011. 469(7330): p. 389-392.
146. Li, Q., et al., Grain boundary structures and electronic properties of hexagonal boron
nitride on Cu (111). Nano letters, 2015. 15(9): p. 5804-5810.
147. Ly, T.H., et al., Misorientation-angle-dependent electrical transport across
molybdenum disulfide grain boundaries. Nature communications, 2016. 7(1): p. 10426.
148. Huang, Y.L., et al., Bandgap tunability at single-layer molybdenum disulphide grain
boundaries. Nature communications, 2015. 6(1): p. 6298.
149. Voiry, D., et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution
reaction. Nano letters, 2013. 13(12): p. 6222-6227.
150. Wu, C., et al., A critical review on enhancement of photocatalytic hydrogen production
by molybdenum disulfide: from growth to interfacial activities. Small, 2019. 15(35): p.
1900578.
151. Liang, Z., et al., A review on 2D MoS2 cocatalysts in photocatalytic H2 production.
Journal of Materials Science & Technology, 2020. 56: p. 89-121.
152. Li, Z., X. Meng, and Z. Zhang, Recent development on MoS2-based photocatalysis: A
review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018.
35: p. 39-55.
153. Jiang, L., et al., Engineering isolated S vacancies over 2D MoS2 basal planes for
catalytic hydrogen evolution. ACS applied nano materials, 2022. 5(3): p. 3521-3530.
154. Liang, Q., et al., Defect engineering of two-dimensional transition-metal
dichalcogenides: applications, challenges, and opportunities. ACS nano, 2021. 15(2):
p. 2165-2181.
155. Kang, S., et al., Defect-engineered MoS 2 with extended photoluminescence lifetime for
high-performance hydrogen evolution. Journal of Materials Chemistry C, 2019. 7(33):
p. 10173-10178.
156. Zhang, H., et al., Surface modulation of hierarchical MoS2 nanosheets by Ni single
atoms for enhanced electrocatalytic hydrogen evolution. Advanced Functional
Materials, 2018. 28(51): p. 1807086.
157. Li, L. and E.A. Carter, Defect-mediated charge-carrier trapping and nonradiative
recombination in WSe2 monolayers. Journal of the American Chemical Society, 2019.
141(26): p. 10451-10461.
158. Karvonen, L., et al., Rapid visualization of grain boundaries in monolayer MoS2 by
multiphoton microscopy. Nature communications, 2017. 8(1): p. 15714.
159. Lunardon, M., et al., Catalytic Activity of Defect-Engineered Transition Me tal
Dichalcogenides Mapped with Atomic-Scale Precision by Electrochemical Scanning
Tunneling Microscopy. ACS Energy Letters, 2023. 8(2): p. 972-980.
160. Takahashi, Y., et al., High‐Resolution Electrochemical Mapping of the Hydrogen
Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets. Angewandte
Chemie International Edition, 2020. 59(9): p. 3601-3608.
161. Rong, Y., et al., Controlled preferential oxidation of grain boundaries in monolayer
tungsten disulfide for direct optical imaging. ACS nano, 2015. 9(4): p. 3695-3703.
162. Cao, Y., Roadmap and direction toward high-performance MoS2 hydrogen evolution
catalysts. ACS nano, 2021. 15(7): p. 11014-11039.
163. Sharma, L., et al., Hydrogen evolution at the in situ MoO3/MoS2 heterojunctions
created by nonthermal O2 plasma treatment. ACS Applied Energy Materials, 2020.
3(6): p. 5333-5342.
164. Jeong, H.Y., et al., Visualizing point defects in transition-metal dichalcogenides using
optical microscopy. Acs Nano, 2016. 10(1): p. 770-777.
165. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis. Nature methods, 2012. 9(7): p. 671-675.
166. Lim, C.S., et al., Impact electrochemistry of layered transition metal dichalcogenides.
Acs Nano, 2015. 9(8): p. 8474-8483.
167. Qorbani, M., et al., Atomistic insights into highly active reconstructed edges of
monolayer 2H-WSe2 photocatalyst. Nature communications, 2022. 13(1): p. 1256.
168. Gupta, S., A. Johnston, and S. Khondaker, Correlated KPFM and TERS imaging to
elucidate defect-induced inhomogeneities in oxygen plasma treated 2D MoS2
nanosheets. Journal of Applied Physics, 2022. 131(16).
169. Ko, T.Y., et al., On-stack two-dimensional conversion of MoS2 into MoO3. 2D
Materials, 2016. 4(1): p. 014003.
170. Chow, W.L., et al., Evolution of Raman scattering and electronic structure of ultrathin
molybdenum disulfide by oxygen chemisorption. Advanced Electronic Materials, 2015.
1(1-2): p. 1400037.
171. Enyashin, A.N., et al., Line defects in molybdenum disulfide layers. The Journal of
Physical Chemistry C, 2013. 117(20): p. 10842-10848.
172. Seo, B., et al., Monolayer-precision synthesis of molybdenum sulfide nanoparticles and
their nanoscale size effects in the hydrogen evolution reaction. ACS nano, 2015. 9(4):
p. 3728-3739.
173. Exner, K.S., On the optimum binding energy for the hydrogen evolution reaction: How
do experiments contribute? Electrochemical Science Advances, 2022. 2(4): p.
e2100101.
174. Park, S., et al., Spectroscopic visualization of grain boundaries of monolayer
molybdenum disulfide by stacking bilayers. ACS nano, 2015. 9(11): p. 11042-11048.
175. Shi, J., et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its
potential application in hydrogen evolution reaction. ACS nano, 2014. 8(10): p. 10196-
10204.
176. Castellanos-Gomez, A., et al., Local strain engineering in atomically thin MoS2. Nano
letters, 2013. 13(11): p. 5361-5366.
177. Ge, J., et al., Oxygen atoms substituting sulfur atoms of MoS2 to activate the basal plane
and induce the phase transition for boosting hydrogen evolution. Materials Today
Energy, 2021. 22: p. 100854.
178. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia,
2003. 7: p. 31-38.
179. Lavini, F., et al., Friction and work function oscillatory behavior for an even and odd
number of layers in polycrystalline MoS 2. Nanoscale, 2018. 10(17): p. 8304-8312.
180. Moore, D., et al., Uncovering topographically hidden features in 2D MoSe2 with
correlated potential and optical nanoprobes. npj 2D Materials and Applications, 2020.
4(1): p. 44.
181. Precner, M., et al., Evolution of metastable defects and its effect on the electronic
properties of MoS2 films. Scientific reports, 2018. 8(1): p. 6724.
182. Ly, T.H., et al., Observing grain boundaries in CVD-grown monolayer transition metal
dichalcogenides. ACS nano, 2014. 8(11): p. 11401-11408.
183. Hsiao, F.-H., et al., Using exciton/trion dynamics to spatially monitor the catalytic
activities of MoS2 during the hydrogen evolution reaction. ACS nano, 2022. 16(3): p.
4298-4307.
指導教授 陳賜原 謝雅萍 謝馬利歐(Szu-Yuan Chen Ya-Ping Hsieh Mario Hofmann) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明