博碩士論文 111222021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.144.98.43
姓名 賴誼峰(Yi-Feng Lai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鈀鈷薄膜中異常霍爾效應符號翻轉行為與其介面 之磁特性研究
(The Sign Reversal of Anomalous Hall Effect and the Interfacial Magnetic Properties in PdCo Thin Films)
相關論文
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 在磁性薄膜中異常霍爾效應的符號翻轉行為已經被廣泛研究。然而,在重金屬加上鐵磁材料的磁性薄膜系統中,重金屬與鐵磁層的之間介面在討論磁性薄膜的磁性及傳輸行為中扮演很重要的角色。在本論文研究中利用基於第一原理計算開發的JunPy方法來計算鈀鈷雙層膜的自旋軌道矩,結果顯示在鈀鈷雙層膜中來自鈀鈷介面以及來自鈀或鈷表面的磁異向性貢獻之間有一個水平異向性及垂直異向性互相競爭的關係。接續透過分析鈀鈷雙層膜不同原子層之間的自旋軌道矩,可以分辨出磁異向能的貢獻主要來自薄膜的介面還是表面。此外,我們也測量了不同厚度下鈀鈷薄膜的異常霍爾效應,並觀察到當鈷的厚度為1.4奈米時,異常霍爾電阻會發生符號翻轉的現象。這主要是由於不同異常霍爾效應機制之間的競爭所導致的結果,例如貝里曲率的變化和雜質散射。相反的,我們並沒有在改變鈀的厚度時,發現異常霍爾電阻符號翻轉的行為。異常霍爾電阻隨著鈀的厚度增加時,主要是被電流的分流效應所影響,進而使異常霍爾電阻隨著鈀厚度增加而減小,並且當鈀的厚度接近其平均自由徑時變化趨於平緩。我們的結果不僅加深了我們對鈀鈷薄膜在不同厚度下的磁性與電性行為變化的理解,也提供了一個新的計算方式來研究在重金屬和鐵磁材料的薄膜中介面或其表面對磁異向性的影響。
摘要(英) The sign reversal of the anomalous Hall resistance in magnetic thin films has been extensively researched. However, in systems that combine heavy metals (HM) and ferromagnetic (FM) materials, the interface plays a crucial role in influencing the magnetic and transport properties of HM/FM thin films. In our study, we utilized our JunPy package, which is based on density functional theory (DFT) calculations, to calculate the spin-orbit torque (SOT) in Pd/Co bilayers. The results indicate a competition between in-plane magnetic anisotropy and perpendicular anisotropy coming from the Pd/Co interface or the Pd and Co surfaces. The layer-resolved SOTs offer a method to distinguish the magnetic anisotropy energy contributions from the interface or surfaces in Pd/Co bilayers. Furthermore, we measured the relationship between thickness and the anomalous Hall effect (AHE) in Pd/Co thin films. A change in the AHE sign occurs at approximately 1.4 nm Co thickness in Pd/Co thin films with different Co thicknesses. This observation is consistent with the competing mechanisms of the AHE, such as intrinsic Berry curvature and impurity scattering. In contrast, there is no sign change when altering the thickness of Pd in Pd/Co thin films. The anomalous Hall resistance decreases as the Pd thickness increases due to the shunting effect. Eventually, the anomalous Hall resistance levels off after increasing the Pd thickness to a critical value comparable to its mean free path. These results deepen our understanding of both the magnetic and transport behaviors of Pd/Co thin films with different thicknesses and provide a novel perspective for studying magnetic anisotropy at the interface in HM/FM systems.
關鍵字(中) ★ 異常霍爾效應
★ 第一原理
★ 磁異向性
★ 自旋矩
★ 磁性薄膜
關鍵字(英) ★ anomalous Hall efect
★ first-priciples
★ magnetic anisotropy
★ spin torque
★ magnetic thin film
論文目次 中文摘要.......................................................................................................... i
Abstract............................................................................................................ ii
Contents ........................................................................................................... iii
List of Figures.................................................................................................. v
Chapter 1. Introduction ................................................................................. 1
Chapter 2. Magnetism and Magnetic Anisotropy ......................................... 8
2.1 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Magnetocrystalline Anisotropy . . . . . . . . . . . . . . . 10
2.2.1 Cubic Anisotropy . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Uniaxial Anisotropy . . . . . . . . . . . . . . . . . . . . . 11
2.3 Shape Anisotropy . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Magnetic Anisotropy Energy . . . . . . . . . . . . . . . . 13
Chapter 3. Hall effect....................................................................................15
3.1 Ordinary Hall effect . . . . . . . . . . . . . . . . . . . . . 15
3.2 Anomalous Hall effect . . . . . . . . . . . . . . . . . . . 17
3.2.1 Intrinsic Mechanism . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Extrinsic Mechanisms . . . . . . . . . . . . . . . . . . . . 18
Chapter 4. Experimental Methods ................................................................19
4.1 Magnetron Sputtering . . . . . . . . . . . . . . . . . . . . 19
4.2 Sample Fabrication . . . . . . . . . . . . . . . . . . . . . 20
4.3 Hall measurement . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 5. Computational Details.................................................................23
5.1 Structure Geometry . . . . . . . . . . . . . . . . . . . . . 23
5.2 Structural Relaxation . . . . . . . . . . . . . . . . . . . . 24
5.3 Electrical and Spin Moment Calculation . . . . . . . . . . 25
5.4 Parameters for Spin Torque Calculation . . . . . . . . . . 25
Chapter 6. Results and Discussion................................................................27
6.1 DFT-based Spin Torque Calculation of Co Thin Film . . . 27
6.1.1 Spin Torque and Magnetic Anisotropy Energy . . . . . . . 27
6.1.2 Layer-resolved Spin Torque . . . . . . . . . . . . . . . . . 29
6.2 DFT-based Spin Torque Calculation of Pd/Co Bilayers . . 30
iii
6.2.1 Thickness Dependence of Spin Torque and Magnetic Anisotropy
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.2 Thickness Dependence of Effective Anisotropy Energy . . 32
6.3 Co Thickness Dependence of Electrical Measurement . . . 35
6.3.1 The measurement for Pd(5 nm)/Co(1.4 nm)/Pd(3 nm) . . . 35
6.3.2 Thickness Dependence of Anomalous Hall Resistance . . . 36
6.4 Pd Thickness Dependence of Electrical Measurement . . . 36
6.4.1 Thickness Dependence of Resistance . . . . . . . . . . . . 37
6.4.2 Thickness Dependence of Anomalous Hall Resistance . . . 37
Chapter 7. Conclusion...................................................................................42
References........................................................................................................44
Appendix..........................................................................................................48
A.1 The LabVIEW Program for Hall Measurement . . . . . . . 48
A.2 The Parallel Circuit Model in AHE . . . . . . . . . . . . . 49
參考文獻 [1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett., 61(21):2472–2475, 1988.
[2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39(7):4828–4830, 1989.
[3] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett., 74(16):3273–3276, 1995.
[4] Qiming Shao, Peng Li, Luqiao Liu, Hyunsoo Yang, Shunsuke Fukami, Armin Razavi, Hao Wu, Kang Wang, Frank Freimuth, Yuriy Mokrousov, Mark D. Stiles, Satoru Emori, Axel Hoffmann, Johan Åkerman, Kaushik Roy, Jian-Ping Wang, See-Hun Yang, Kevin Garello, and Wei Zhang. Roadmap of spin– orbit torques. IEEE Transactions on Magnetics, 57(7):1–39, 2021.
[5] Jairo Sinova, Sergio O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth. Spin Hall effects. Rev. Mod. Phys., 87(4):1213–1260, 2015.
[6] T. Y. Ma, C. H. Wan, X. Wang, W. L. Yang, C. Y. Guo, C. Fang, M. K. Zhao, J. Dong, Y. Zhang, and X. F. Han. Evidence of magnetization switching by anomalous spin Hall torque in NiFe. Phys. Rev. B, 101(13):134417, 2020.
[7] Stephen R. Boona, Hyungyu Jin, and Sarah Watzman. Transverse thermal energy conversion using spin and topological structures. Journal of Applied Physics, 130(17):171101, 2021.
44
[8] Dazhi Hou, Gang Su, Yuan Tian, Xiaofeng Jin, Shengyuan A. Yang, and Qian Niu. Multivariable Scaling for the Anomalous Hall Effect. Phys. Rev. Lett., 114(21):217203, 2015.
[9] Takumi Yamazaki, Takeshi Seki, Rajkumar Modak, Keita Nakagawara, Takamasa Hirai, Keita Ito, Ken-ichi Uchida, and Koki Takanashi. Thickness dependence of anomalous Hall and Nernst effects in Ni-Fe thin films. Phys. Rev. B, 105(21):214416, 2022.
[10] Z. B. Guo, W. B. Mi, R. O. Aboljadayel, B. Zhang, Q. Zhang, P. G. Barba, A. Manchon, and X. X. Zhang. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers. Phys. Rev. B, 86(10):104433, 2012.
[11] V. Keskin, B. Aktaş, J. Schmalhorst, G. Reiss, H. Zhang, J. Weischenberg, and Y. Mokrousov. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Applied Physics Letters, 102(2):022416, 2013.
[12] A. V. Davydenko, A. G. Kozlov, A. G. Kolesnikov, M. E. Stebliy, G. S. Suslin, Yu. E. Vekovshinin, A. V. Sadovnikov, and S. A. Nikitov. Dzyaloshinskii-Moriya interaction in symmetric epitaxial [ Co / Pd ( 111 ) ] N superlattices with different numbers of Co/Pd bilayers. Phys. Rev. B, 99(1):014433, 2019.
[13] Krzysztof Grochot, Piotr Ogrodnik, Jakub Mojsiejuk, Piotr Mazalski, Urszula Guzowska, Witold Skowroński, and Tomasz Stobiecki. Influence of ferromagnetic interlayer exchange coupling on current-induced magnetization switching and Dzyaloshinskii–Moriya interaction in Co/Pt/Co multilayer system. Sci Rep, 14(1):9938, 2024.
[14] B. Sampedro, P. Crespo, A. Hernando, R. Litrán, J. C. Sánchez López, C. López Cartes, A. Fernandez, J. Ramírez, J. González Calbet, and M. Vallet. Ferromagnetism in fcc Twinned 2.4 nm Size Pd Nanoparticles. Phys. Rev. Lett., 91(23):237203, 2003.
[15] S. Sakuragi, T. Sakai, S. Urata, S. Aihara, A. Shinto, H. Kageshima, M. Sawada, H. Namatame, M. Taniguchi, and T. Sato. Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films. Phys. Rev. B, 90(5):054411, 2014.
[16] Jan Vogel, Alain Fontaine, Vincent Cros, Frédéric Petroff, Jean-Paul Kappler, Gérard Krill, Andrei Rogalev, and José Goulon. Structure and magnetism of Pd in Pd/Fe multilayers studied by x-ray magnetic circular dichroism at the Pd L 2 , 3 sedges. Phys. Rev. B, 55(6):3663–3669, 1997.
[17] Mathias Getzlaff. Fundamentals of magnetism. Springer Science & Business Media, 2007. 45
[18] Bernard Dennis Cullity and Chad D Graham. Introduction to Magnetic Materials. John Wiley & Sons, 2011.
[19] H. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder. Magnetic interface anisotropy in Pd/Co and Pd/Fe multilayers. Journal of Magnetism and Magnetic Materials, 66(3):351–355, 1987.
[20] F. J. A. den Broeder, W. Hoving, and P. J. H. Bloemen. Magnetic anisotropy of multilayers. Journal of Magnetism and Magnetic Materials, 93:562–570, 1991.
[21] E. H. Hall. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879.
[22] E.H. Hall. XVIII. On the “Rotational Coefficient” in nickel and cobalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(74):157–172, 1881.
[23] Emerson M. Pugh. Hall Effect and the Magnetic Properties of Some Ferromagnetic Materials. Phys. Rev., 36(9):1503–1511, 1930.
[24] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 82(2):1539–1592, 2010.
[25] Robert Karplus and J. M. Luttinger. Hall Effect in Ferromagnetics. Phys. Rev., 95(5):1154– 1160, 1954.
[26] Xinjie Wang, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. Ab Initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B, 74(19):195118, 2006.
[27] J. Smit. The spontaneous hall effect in ferromagnetics I. Physica, 21(6):877–887, 1955.
[28] J. Smit. The spontaneous hall effect in ferromagnetics II. Physica, 24(1):39–51, 1958.
[29] B. N. Dutta and B. Dayal. Lattice Constants and Thermal Expansion of Palladium and Tungsten up to 878 ◦C by X-Ray Method. physica status solidi (b), 3(12):2253–2259, 1963.
[30] Paweł Kozłowski, Piotr Fabrykiewicz, Izabela Sosnowska, François Fauth, Anatoliy Senyshyn, Emmanuelle Suard, Dariusz Oleszak, and Radosław Przeniosło. Monoclinic symmetry of the hcp-type ordered areas in bulk cobalt. Phys. Rev. B, 107(10):104104, 2023. 46
[31] Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.
[32] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16):11169–11186, 1996.
[33] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B, 59(3):1758–1775, 1999.
[34] Jeremy Taylor, Hong Guo, and Jian Wang. Ab Initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63(24):245407, 2001.
[35] Derek Waldron, Lei Liu, and Hong Guo. Ab initio simulation of magnetic tunnel junctions. Nanotechnology, 18(42):424026, 2007.
[36] Bao-Huei Huang, Chia-Chia Chao, and Yu-Hui Tang. Thickness dependence of spin torque effect in Fe/MgO/Fe magnetic tunnel junction: Implementation of divide-and-conquer with first-principles calculation. AIP Advances, 11(1):015036, 2021.
[37] Bao-Huei Huang, Yu-Hsiang Fu, Chao-Cheng Kaun, and Yu-Hui Tang. Determining perpendicular magnetic anisotropy in Fe/MgO/Fe magnetic tunnel junction: A DFT-based spin–orbit torque method. Journal of Magnetism and Magnetic Materials, 585:171098, 2023.
[38] Bao-Huei Huang, Yi-Feng Lai, and Yu-Hui Tang. Validity of DFT-based spin-orbit torque calculation for perpendicular magnetic anisotropy in iron thin films. AIP Advances, 13(1):015034, 2023.
[39] Robert C. O’Handley. Modern Magnetic Materials: Principles and Applications. New York Weinheim, 2000.
[40] S. M. Shivaprasad, L. A. Udachan, and M. A. Angadi. Electrical resistivity of thin palladium films. Physics Letters A, 78(2):187–188, 1980.
[41] E.H. Sondheimer. The mean free path of electrons in metals. Advances in Physics, 1(1):1– 42, 1952.
[42] D. Schumacher. New evidence for the validity of the Fuchs-Sondheimer theory. Thin Solid Films, 152(3):499–510, 1987.
指導教授 唐毓慧 洪振湧(Yu-Hui Tang Jhen-Yong Hong) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明