博碩士論文 109222003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.15.140.0
姓名 吳秉宜(Ping-I Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Large-volume Microwave Cavity Design for the Taiwan Axion Search Experiment with Haloscope)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC
★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector★ 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態
★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率
★ The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV★ 於尋找單希格斯粒子中研究噴流子結構可觀測量
★ The analysis of the TASEH CD102 data★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質
★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection★ 利用LC電路開發低質量軸子探測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在軸子(Axion)偵測實驗中,共振腔的品質因子(quality factor)、form factor和體積都很重要。大多數實驗通常使用帶有調頻桿的圓柱形腔體;然而,它們的體積受到實驗的目標共振頻率的限制。因此,我們需要研發一種具有良好性能的新型可調頻的共振腔體。在2020年,一種叫做圓錐殼共振腔體(conic-shell cavity)的新穎結構被提出。我模擬了圓錐殼共振腔體的特性,並透過測量兩個用鋁製成的樣品驗證了模擬的結果。使用這種設計,我們預期能將實驗對軸子-光子-光子耦合(axion-photon-photon coupling)的靈敏度提高2.6倍。
摘要(英) In the axion haloscope experiments, the quality factor, form factor, and volume of the resonator are important. Most experiments commonly use cylindrical cavities with a tuning rod; however, their volume is limited by the target resonant frequency. Thus, the development of a new frequency-tunable cavity with a good performance is needed. A novel structure called the conic-shell cavity was proposed in 2020. I simulated the characteristic of the conic-shell cavity and validated the results by measuring the performance of two prototypes fabricated with aluminum. Using this design, we expect to improve the experiment′s sensitivity to the axion-photon-photon coupling by a factor of 2.6.
關鍵字(中) ★ 暗物質
★ 軸子
★ 強CP問題
關鍵字(英) ★ Dark matter
★ Axion
★ Strong CP problem
論文目次 1 Introduction and an Overview of Theory 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical Motivations (Axions) . . . . . . . . . . . . . . . . . . . 1
1.2.1 Strong-CP problem . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 The Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Cold Dark Matter Axions . . . . . . . . . . . . . . . . . . . 3
1.2.4 Different Types of Axion Experiments . . . . . . . . . . . . 3
2 The Taiwan Axion Search Experiment with a Haloscope 5
2.1 The Axion Haloscope . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Detection Figure of Merit for Cavity Design . . . . . . . . . . . . . 6
2.3 First Results of TASEH . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Dilution Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Resonator 11
3.1 MW Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Resonator properties . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Measurement method . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 S-parameter measurement . . . . . . . . . . . . . . . . . . . 13
3.3.2 Electric field distribution . . . . . . . . . . . . . . . . . . . 14
4 Conic-Shell Cavity 17
4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 First Aluminum Prototype Cavity 27
5.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Dimension measurement . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Validation of Tuning Mechanism . . . . . . . . . . . . . . . . . . . 31
5.4 Electric Field Distribution Measurements . . . . . . . . . . . . . . 32
5.4.1 Probe Method . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Bead-pull Method . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Quality factor and possible issues . . . . . . . . . . . . . . . . . . . 36
6 Measurements of the second Aluminum Prototype Cavity 39
6.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Dimension measurement . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Validation of Tuning Mechanism . . . . . . . . . . . . . . . . . . . 40
6.4 Electric Field Distribution Measurements . . . . . . . . . . . . . . 41
6.5 Quality factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Conclusion 45
Bibliography 47
參考文獻 [1] Chao-Lin Kuo. “Large-volume centimeter-wave cavities for axion
searches”. In: Journal of Cosmology and Astroparticle Physics (2020).
[2] Chao-Lin Kuo. “Symmetrically tuned large-volume conic shell-cavities for
axion searches”. In: Journal of Cosmology and Astroparticle Physics (2021).
[3] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment
with a Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. 129 (11 2022), p. 111802.
DOI: 10.1103/PhysRevLett.129.111802. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.129.111802.
[4] Ta-Pei Cheng and Ling-Fong Li. Gauge Theory of Elemeentary Particle
Physics. Oxford University Press, 1984.
[5] I.S. Altarev et al. “New measurement of the electric dipole moment of the
neutron”. In: Physics Letters B 276.1 (1992), pp. 242–246. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370-2693(92)90571-K. URL:
https : / / www . sciencedirect . com / science / article / pii /
037026939290571K.
[6] R.J. Crewther et al. “Chiral estimate of the electric dipole moment of the
neutron in quantum chromodynamics”. In: Physics Letters B 88.1 (1979),
pp. 123–127. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-
2693(79 ) 90128 - X. URL: https : / / www . sciencedirect . com /
science/article/pii/037026937990128X.
[7] Jihn E. Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In:
Phys. Rev. Lett. 43 (2 1979), pp. 103–107. DOI: 10.1103/PhysRevLett.
43 . 103. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.43.103.
[8] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. “Can confinement ensure natural CP invariance of strong interactions?” In: Nuclear Physics
B 166.3 (1980), pp. 493–506. ISSN: 0550-3213. DOI: https : / / doi .
org / 10 . 1016 / 0550 - 3213(80 ) 90209 - 6. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321380902096.
47
[9] Michael Dine, Willy Fischler, and Mark Srednicki. “A simple solution to
the strong CP problem with a harmless axion”. In: Physics Letters B 104.3
(1981), pp. 199–202. ISSN: 0370-2693. DOI: https://doi.org/10.1016/
0370 - 2693(81 ) 90590 - 6. URL: https : / / www . sciencedirect .
com/science/article/pii/0370269381905906.
[10] A P Zhitnitskii. “Possible suppression of axion-hadron interactions”. In:
Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 31 (). URL: https://www.
osti.gov/biblio/7063072.
[11] E. Corbelli and P. Salucci. “The extended rotation curve and the dark matter halo of M33”. In: Monthly Notices of the Royal Astronomical Society 311.2
(Jan. 2000), 441–447. ISSN: 1365-2966. DOI: 10 . 1046 / j . 1365 - 8711 .
2000.03075.x. URL: http://dx.doi.org/10.1046/j.1365-
8711.2000.03075.x.
[12] Lars Bergström. “Dark matter candidates”. In: New Journal of Physics 11.10
(Oct. 2009), p. 105006. ISSN: 1367-2630. DOI: 10.1088/1367-2630/11/
10/105006. URL: http://dx.doi.org/10.1088/1367-2630/11/
10/105006.
[13] John Preskill, Mark B. Wise, and Frank Wilczek. “Cosmology of the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 127–132. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370-2693(83)90637-8. URL:
https : / / www . sciencedirect . com / science / article / pii /
0370269383906378.
[14] L.F. Abbott and P. Sikivie. “A cosmological bound on the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 133–136. ISSN: 0370-2693. DOI:
https : / / doi . org / 10 . 1016 / 0370 - 2693(83 ) 90638 - X. URL:
https : / / www . sciencedirect . com / science / article / pii /
037026938390638X.
[15] Michael Dine and Willy Fischler. “The not-so-harmless axion”. In: Physics
Letters B 120.1 (1983), pp. 137–141. ISSN: 0370-2693. DOI: https : / /
doi . org / 10 . 1016 / 0370 - 2693(83 ) 90639 - 1. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0370269383906391.
[16] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett.
51 (16 1983), pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.51.
1415.
[17] P. Sikivie. “Detection rates for “invisible”-axion searches”. In: Phys. Rev. D
32 (11 1985), pp. 2988–2991. DOI: 10.1103/PhysRevD.32.2988. URL:
https://link.aps.org/doi/10.1103/PhysRevD.32.2988.
48
[18] Javier Redondo and Andreas Ringwald. “Light shining through walls”.
In: Contemporary Physics 52.3 (May 2011), 211–236. ISSN: 1366-5812. DOI:
10.1080/00107514.2011.563516. URL: http://dx.doi.org/10.
1080/00107514.2011.563516.
[19] J I Read. “The local dark matter density”. In: Journal of Physics G: Nuclear
and Particle Physics 41.6 (May 2014), p. 063101. ISSN: 1361-6471. DOI: 10.
1088/0954-3899/41/6/063101. URL: http://dx.doi.org/10.
1088/0954-3899/41/6/063101.
[20] Hsin Chang et al. “Taiwan axion search experiment with haloscope: Designs and operations”. In: Review of Scientific Instruments 93.8 (Aug. 2022).
ISSN: 1089-7623. DOI: 10.1063/5.0098783. URL: http://dx.doi.
org/10.1063/5.0098783.
[21] David M Pozar. Microwave engineering; 3rd ed. Hoboken, NJ: Wiley, 2005.
URL: https://cds.cern.ch/record/882338.
[22] John David Jackson. Classical Electrodynamics. Wiley, 1998. ISBN: 978-0-471-
30932-1.
[23] YI-CHIEH CHANG. “Development of a High Quality Factor Tunable Resonant Cavity Used in Axion Search Systems”. MA thesis. Ming Chi University of Technology, 2022.
[24] R.A. Waldron. “Perturbation theory of resonant cavities”. English. In: Proceedings of the IEE - Part C: Monographs 107 (12 1960), 272–274(2). ISSN: 0369-
8904. URL: https : / / digital - library . theiet . org / content /
journals/10.1049/pi-c.1960.0041.
[25] Binshen Meng, J. Booske, and R. Cooper. “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials”. In: IEEE Transactions on Microwave Theory and Techniques 43.11 (1995),
pp. 2633–2636. DOI: 10.1109/22.473190.
指導教授 余欣珊(Shin-Shan Yu) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明