博碩士論文 110222008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.22.42.25
姓名 邱柏齊(Po-Chi Chiu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用LC電路開發低質量軸子探測器
(Developing a Low-Mass Axion Detector Using an LC Circuit)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC
★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector★ 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態
★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率
★ The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV★ 於尋找單希格斯粒子中研究噴流子結構可觀測量
★ The analysis of the TASEH CD102 data★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質
★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection★ Large-volume Microwave Cavity Design for the Taiwan Axion Search Experiment with Haloscope
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們的 LC 電路探測器的目標是仔細研究質量約為 0.5μeV(對應於
120 MHz 頻率)的難以捉摸的軸子。在外加強磁場的存在下,軸子能夠
引發一種奇異電流,從而產生微弱但可察覺的振盪磁場。傳統的使用
腔體法的方式在這麼低頻率下檢測信號是不切實際的。為了克服這一
限制,我們提出了一種新穎的策略,即利用 LC 電路的諧振頻率來放大
我們對軸子引起的磁場的探測。這個 LC 電路的諧振頻率被設計為可調
諧,這一特性可以通過調整電容來實現。這不僅為我們提供了一個增
強信號的多功能工具,還開闢了探索軸子質量潛在變化的途徑。
通過精細調整 LC 電路的電容,我們可以精確控制並探索一系列共振
頻率。這種動態調諧能力對於適應不同的實驗條件和優化我們的探測
系統的靈敏度至關重要。此外,它使我們能夠在軸子質量上進行全面
的搜索,為這些難以捉摸的粒子的基本特性提供有價值的見解。本質
上,我們的創新方法利用了 LC 電路中的諧振頻率調諧的力量,提供了
一種複雜且可適應的手段來探索軸子物理的複雜性。這不僅增強了我
們檢測軸子引起的磁場的能力,還使我們處於尖端研究的前沿,推動
我們對基本粒子及其行為的理解邊界。
摘要(英) The objective of our LC circuit detector is to meticulously investigate the elusive axion with a specific mass hovering around 0.5 µ eV, corresponding to a frequency of 120 MHz.
In the presence of a strong static magnetic field, axions can instigate an exotic current, thereby inducing a subtle yet discernible oscillating magnetic field. The conventional
approach of employing the cavity method proves impractical for detecting signals at such low frequencies. To overcome this limitation, we propose a novel strategy that involves leveraging the resonant frequency of an LC circuit to amplify our pursuit of the axion-induced magnetic field. This LC circuit’s resonant frequency is designed to be tunable, a feature achievable by adjusting the capacitance. This not only provides us with a versatile tool for signal enhancement but also opens up avenues for probing potential variations in the axion’s mass.
By finely tuning the capacitance of the LC circuit, we can precisely control and explore a range of resonant frequencies. This dynamic tuning capability is instrumental
in adapting to different experimental conditions and optimizing the sensitivity of our detection system. Furthermore, it enables us to conduct a comprehensive search in the axion’s mass, offering valuable insights into the fundamental properties of these elusive particles. In essence, our innovative approach harnesses the power of resonant frequency tuning in an LC circuit, providing a sophisticated and adaptable means to explore the intricacies of axion physics. This not only enhances our ability to detect the axion-induced magnetic field but also positions us at the forefront of cutting-edge research, pushing the boundaries of our understanding of fundamental particles and
their behaviors
關鍵字(中) ★ 軸子
★ LC電路
關鍵字(英) ★ axion
★ LC circuit
論文目次 Contents
1 Motivation and Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.1 The Dark Matter and the Axion . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Current Results of the Axion Searches . . . . . . . . . . . . . . . . 2
2 Theoretical Derivation of the Axion Field 7
2.1 The B field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The E field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Theory of the Axion Searches with LC circuits . . . . . . . . . . . . . . . 11
3 The Design of the LC Lumped Elements 15
3.1 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Trimmer Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 The External Setup of the TASEH-LC Experiment 21
4.1 The Cryogenic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 Dilution Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 The Superconducting Magnet . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 The Vector Network Analyzer and the Vector Signal Transceiver . 22
4.1.4 Motor tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.5 The Circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 The Axion-searching Device Design with an LC Circuit 27
5.1 The First version design of LC circuit frame . . . . . . . . . . . . . . . . . 28
5.2 The Second version design of LC circuit frame . . . . . . . . . . . . . . . 33
5.3 The Third version design of LC circuit frame . . . . . . . . . . . . . . . . 38
6 Test for the Setups of the Coupling Wire and the LC Circuit 41
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Test for the coupling wire at room temperature . . . . . . . . . . . . . . . 41
6.2.1 Optimization of the readout coupling wire . . . . . . . . . . . . . 41
6.2.2 Different coupling line position . . . . . . . . . . . . . . . . . . . 42
6.2.3 Different coupling wire-diameter . . . . . . . . . . . . . . . . . . 43
6.2.4 Different circumferences of coupling wire loops . . . . . . . . . . 44
6.3 Test for the LC circuit lump elements . . . . . . . . . . . . . . . . . . . . . 46
6.3.1 The wielding of copper readout wires to the LC circuit . . . . . . 46
6.3.2 The results of different wielding methods . . . . . . . . . . . . . . 47
6.3.3 The analysis of the data collected on 2023/06/29 . . . . . . . . . 49
6.4 The Cool-down TASEH 013 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 CDT013 test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 Test results of CDT013 . . . . . . . . . . . . . . . . . . . . . . . . . 55
Constant displacement for each motor step . . . . . . . . . . . . . 57
Determination of the motor displacement for a 1 MHz frequency
change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.4 The test for CDT013 setup at room temperature . . . . . . . . . . 60
6.5 The test result and experiment setup of CDT015 . . . . . . . . . . . . . . 60
6.5.1 CDT015 test result of room temperature . . . . . . . . . . . . . . . 64
6.5.2 CDT015 test result of low temperature in DR . . . . . . . . . . . . 64
7 Calibration for the amplification chain and test of the LC circuit performance 67
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.1 Component test for amplification chain . . . . . . . . . . . . . . . 67
Room Temperature amplifier test . . . . . . . . . . . . . . . . . . 67
Cryogenic amplifier test at the room temperature . . . . . . . . . 69
The electric circuit diagram of LC circuit and amplification chain 70
Noise level test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.2 LC circuit test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Strong coupling port reflection . . . . . . . . . . . . . . . . . . . 73
7.2 Calibration of the amplification chain . . . . . . . . . . . . . . . . . . . . 75
7.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2.2 Calibrate the amplifier chain with the LC circuit . . . . . . . . . . 77
7.2.3 Calibrate the amplifier chain without the LC circuit . . . . . . . . 77
8 Conclusion 81
8.1 The limit of the expected gaγγ . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A 87
A.1 Axion field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Combining these Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 The B field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 The E field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.5 The long-wavelength limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
bibliography 97
參考文獻 bibliography
[1] V. C. Rubin, W. K. Jr. Ford, and N. Thonnard. “A New Light Boson?” In: Astrophysical Journal (1978). D O I: 10.1086/182804.
[2] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In: Phys. Rev. Lett. 38 (25 1977), pp. 1440–1443. D O I: 10.1103/
PhysRevLett.38.1440. U R L: https://link.aps.org/doi/10.1103/
PhysRevLett.38.1440.
[3] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 1978), pp. 223–
226. D O I: 10.1103/PhysRevLett.40.223. U R L: https://link.aps.
org/doi/10.1103/PhysRevLett.40.223.
[4] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”.
In: Phys. Rev. Lett. 40 (5 1978), pp. 279–282. D O I: 10.1103/PhysRevLett.40.
279. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.40.
279.
[5] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev.
Lett. 43 (1979), p. 103. D O I: 10.1103/PhysRevLett.43.103.
[6] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement
Ensure Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B 166 (1980),
pp. 493–506. D O I: 10.1016/0550-3213(80)90209-6.
[7] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the
Strong CP Problem with a Harmless Axion”. In: Phys. Lett. B 104 (1981), pp. 199–
202. D O I: 10.1016/0370-2693(81)90590-6.
[8] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In
Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.
[9] A. RINGWALD. “AXIONS AND AXION-LIKE PARTICLES”. In: PNAS (2013).
[10] a J. Gal´an. “Exploring 0.1–10 eV axions with a new helioscope concept”. In:
JCAP12(2015)012 (2015).
[11] C. Hagmann et al. “Results from a High-Sensitivity Search for Cosmic Axions”.
In: Phys. Rev. Lett. 80 (10 1998), pp. 2043–2046. D O I: 10.1103/PhysRevLett.
80.2043. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
80.2043.
[12] S. J. Asztalos et al. “Experimental Constraints on the Axion Dark Matter Halo
Density”. In: The Astrophysical Journal 571.1 (2002), pp. L27–L30. D O I: 10.1086/
341130. U R L: https://doi.org/10.1086/341130.
[13] S. J. Asztalos et al. “Improved rf cavity search for halo axions”. In: Phys. Rev. D
69 (1 2004), 011101 (R). D O I: 10.1103/PhysRevD.69.011101. U R L: https:
//link.aps.org/doi/10.1103/PhysRevD.69.011101.
[14] S. J. Asztalos et al. “SQUID-Based Microwave Cavity Search for Dark-Matter Axions”. In: Phys. Rev. Lett. 104 (4 2010), p. 041301. D O I: 10.1103/PhysRevLett.
104.041301. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
104.041301.
[15] N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 120 (15 2018), p. 151301. D O I: 10.1103/
PhysRevLett . 120 . 151301. U R L: https : / / link . aps . org / doi / 10 .
1103/PhysRevLett.120.151301.
[16] T. Braine et al. “Extended Search for the Invisible Axion with the Axion Dark
Matter Experiment”. In: Phys. Rev. Lett. 124 (10 2020), p. 101303. D O I: 10.1103/
PhysRevLett . 124 . 101303. U R L: https : / / link . aps . org / doi / 10 .
1103/PhysRevLett.124.101303.
[17] C. Bartram et al. “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV
Mass Range”. In: Phys. Rev. Lett. 127.26 (2021), p. 261803. D O I: 10 . 1103 /
PhysRevLett.127.261803.
[18] S. Lee et al. “Axion Dark Matter Search around 6.7 µeV”. In: Phys. Rev. Lett.
124.10 (2020), p. 101802. D O I: 10.1103/PhysRevLett.124.101802. arXiv:
2001.05102 [hep-ex].
[19] Junu Jeong et al. “Search for Invisible Axion Dark Matter with a Multiple-Cell
Haloscope”. In: Phys. Rev. Lett. 125.22 (2020), p. 221302. D O I: 10.1103/PhysRevLett.
125.221302. arXiv: 2008.10141 [hep-ex].
[20] Ohjoon Kwon et al. “First Results from an Axion Haloscope at CAPP around
10.7 µeV”. In: Phys. Rev. Lett. 126 (19 2021), p. 191802. D O I: 10.1103/PhysRevLett.
126.191802. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
126.191802.
[21] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. In:
Nature 590.7845 (2021), 238–242. I S S N: 1476-4687. D O I: 10.1038/s41586-021-
03226-7. U R L: http://dx.doi.org/10.1038/s41586-021-03226-7.
[22] B. M. Brubaker et al. “First results from a microwave cavity axion search at 24
µeV”. In: Phys. Rev. Lett. 118.6 (2017), p. 061302. D O I: 10.1103/PhysRevLett.
118.061302. arXiv: 1610.02580 [astro-ph.CO].
[23] L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion
experiment”. In: Phys. Rev. D 97.9 (2018), p. 092001. D O I: 10.1103/PhysRevD.
97.092001. arXiv: 1803.03690 [hep-ex].
[24] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment with a
Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. (2022). D O I: 10.1103/PhysRevLett.
129.111802.
[25] NJ Neta A Bahcall Princeton. “Dark-matter QCD-axion searches.” In: arXiv:1407.0546v1
(2014).
[26] N. Crisosto et al. “Results from a Superconducting LC Circuit Investigating Cold
Axions”. In: Phys. Rev. Lett. (2019).
[27] L. Brouwer et al. “Projected Sensitivity of DMRadio: A Search for the QCD Axion
Below 1 µeV ”. In: Phys. Rev. Lett. (2022).
[28] Jonathan L. Ouellet et al. “Design and Implementation of the ABRACADABRA-10
cm Axion Dark Matter Search”. In: (2019).
[29] Antoine Garcon et al. “Constraints on bosonic dark matter from ultralow-field
nuclear magnetic resonance”. In: (2019).
[30] Jonathan Ouellet and Zachary Bogorad. “Solutions to axion electrodynamics in
various geometries”. In: (2019). D O I: 10.1103/PhysRevD.99.055010.
[31] N. Crisosto, N. S. Sullivan P. Sikivie, and D. B. Tanner. “ADMX SLIC: Results
from a Superconducting LC Circuit Investigating Cold Axions”. In: (2020). D O I:
10.1103/PhysRevLett.124.241101.
[32] CalculateInductance. In: (). U R L: https://www.qsl.net/in3otd/ind2calc.
html.
[33] PTFE. In: (). U R L: https://catalog.wshampshire.com/Asset/psg_
teflon_ptfe.pdf.
[34] PEEK. In: (). U R L: https://tw.misumi-ec.com/pdf/fa/2015/p2_981.
pdf.
[35] PureCopper. In: (). U R L: https://www.engineeringtoolbox.com/materialproperties-t_24.html.
[36] Hsin Chang et al. “TASEH: A haloscope axion search experiment”. In: (May 2022).
arXiv: 2205.01477 [physics.ins-det]. U R L: https://arxiv.org/abs/
2205.01477.
[38] Mini-Circuits. In: (). U R L: https://www.minicircuits.com/WebStore/
dashboard.html?model=ZX60-3018G-S%2B.
[39] Inc. Cosmic Microwave Technology. In: (). U R L: https://www.cosmicmicrowavetechnocom/citlf2.
[40] P. Sikivie, N. Sullivan, and D. B. Tanner. “Proposal for Axion Dark Matter Detection
Using an LC Circuit”. In: Phys. Rev. Lett. (2014). D O I: 10.1103/PhysRevLett.
112.131301.
指導教授 余欣珊(Shin-Shan Yu) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明