博碩士論文 111222009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.22.250.25
姓名 黃允德(Yun-De Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Bacterial chemotaxis in random environment)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 生物膜黏著引發的相分離—等效膜勢與數值模擬★ 非平衡生物膜上的區塊形成
★ 液滴上的彈性網絡★ 黏著叢集在時變外力下的強度
★ Modeling geometrical trajectories of actin-based motility★ 隨機布耳網路在多連線且臨界情形下的特性
★ 模擬脂質雙層膜上的分子機器★ 組織動力學之建模
★ Cell motility: active gel coupled to adhesion sites★ Agent-based model for an order-driven market: herding effect, limit order strategies, and volatility enhanced trading activities
★ Dynamics of the free boundary of a monolayer cell sheet★ Onset of movement in a one-dimensional active gel model of cell motility
★ Hydrodynamics and spontaneous flow of active permeating polar gels★ Complex one-dimensional motion in complex soft matter systems
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細菌演化出奔跑(run)和翻滾(tumble)這兩種不同的運動模式,以便找到更有利的生存環境。這些運動狀態主要由內部蛋白質控制。除此之外研究上觀察到,奔跑和翻滾的細菌在固體邊界處表現出特別的運動行為。在本篇論文中,模擬趨向化細菌在具有固定隨機圓形障礙物的二維環境中的運動,來研究細菌在其自然環境中遇到的隨機固體邊界的影響。結果顯示,當障礙物邊界之間的平均距離足夠小時,固體邊界的影響使得細菌更有利於找到合適的生存環境。另一方面,在障礙物密度較小的情況下,隨著障礙物密度的增加趨化運動變慢。障礙物邊界之間存在一個平均臨界距離,在此距離時趨向化運動具有最小的平均速度。我們的結果提出了一種透過操縱環境的障礙物密度來控制細菌行為的方法。
摘要(英) Run-and-tumble bacteria have evolved two distinct modes of movement in order to navigate toward more favorable living environments. These movement states are primarily controlled by internal proteins. Additionally, it has been observed that run-and-tumble bacteria exhibit distinctive moving behaviors at solid boundaries. In this thesis, the motion of a chemotactic bacterium in a two-dimensional environment with immobile random circular obstacles is simulated to study the effect of random solid boundaries that a bacterium encounters in its natural environment. The results show that when the average distance between the obstacle walls is sufficiently small, the influence of the solid boundaries makes it more advantageous for bacteria to find a suitable environment for survival. On the other hand, the chemotactic motion in the limit of small densities of obstacles is slower as the density of obstacles increases. There is a critical average distance between the obstacle walls at which the chemotactic motion has the smallest average velocity. Our results suggest a way to control bacterial behavior by manipulating the randomness of the environment.
關鍵字(中) ★ 大腸桿菌
★ 環境
★ 趨向性
關鍵字(英) ★ E. coli
★ bacterial
★ chemotaxis
論文目次 1 Introduction 1
1.1 acterium-wall interaction 5
2 Model 6
2.1 Equations of motion 6
2.2 Transitions between different moving states 7
2.3 Receptor activation and methylation level 8
2.4 Arranging solid disks in the simulation box 11
3 Results: average velocity of run-and-tumble particles in random environments 17
3.1 elocity and Effective Channel Width 17
3.2 Two possible mechanisms that leads to the vx − Weff relation at Weff < Wth 19
3.2.1 Total tumbling time versus Weff 20
3.2.2 Path length versus Weff 21
3.3 Probability of moving toward regions with higher chemoattractant concentration 22
4 Summary 27
參考文獻 Armitage, J. P., & Lackie, J. M. (1981). Biology of the chemotactic response. Cambridge University Press.
Lupas, A., & Stock, J. (1989). Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. Journal of Biological Chemistry, 264(29), 17337-17342.
Berg, H. C. (2000). Motile behavior of bacteria. Physics today, 53(1), 24-29.
Hess, J. F., Bourret, R. B., & Simon, M. I. (1988). Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature, 336(6195), 139-143.
Barak, R., & Eisenbach, M. (1992). Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry, 31(6), 1821-1826.
Welch, M., Oosawa, K., Aizawa, S. L., & Eisenbach, M. (1993). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proceedings of the National Academy of Sciences, 90(19), 8787-8791.
Anand, G. S., Goudreau, P. N., & Stock, A. M. (1998). Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry, 37(40), 14038-14047.
Lupas, A., & Stock, J. (1989). Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. Journal of Biological Chemistry, 264(29), 17337-17342.
Bacon, F. (1965). On the nature of allosteric transitions: a plausible model. J Mol Biol, 12(1), 88-118.
Tu, Y. (2013). Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annual review of biophysics, 42(1), 337-359.
Routh, E. J. (1898). A treatise on dynamics of a particle. Cambridge University Press.
Vladimirov, N., Løvdok, L., Lebiedz, D., & Sourjik, V. (2008). Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS computational biology, 4(12), e1000242.
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明