博碩士論文 112222026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.145.97.235
姓名 徐衍裕(Yen-Yu Hsu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Temperature Dependence of Effective Sites in Water Ice and Carbonaceous Dust Interactions)
相關論文
★ A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice★ X射線與電子能量作用下星際冰晶的化學衍化
★ VUV and EUV irradiation of CH4+NH3 ice mixtures★ Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice
★ Temperature dependent photodesorption of CO ices★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations
★ Diffusion in Realistic-Like Double-Layered Ices★ 能量源照射星際冰晶之光脫附作用與光化學反應
★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation★ 不同電子能量作用下對N2O冰晶的衍化影響
★ 月球碰撞閃焰觀察系統之設立及資料處理分析★ Electron-induced diffusion within astrophysical layered ices
★ 利用光譜分析在層冰中由真空紫外光所誘發的能量傳遞★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來碳基塵埃引起了實驗室天文物理與天文化學領域中科學家的興趣,因為它有可能可以提供碳並與其他冰晶分子反映,進而形成一些複雜有機分子或是它們的前體。多項研究已經證實,在真空紫外線的照射後,固態水分子與碳基塵埃之間的相互作用會產生新的一氧化碳和二氧化碳的生成路徑 (Mennella et al. 2006; Shi et al. 2015)。然而這些研究中都沒有對冰晶覆蓋在塵埃上的情況提供深入的見解。這就引發了一個問題:當冰晶分子覆蓋在塵埃上時是否所有的冰晶分子皆與塵埃有所接觸,還是只有部分的冰晶分子?這個問題非常關鍵,因為碳基塵埃提供的反應位點的數量會大大影響這些含碳產物的產量 (Potapov et al. 2023)。因此,本研究旨在了解溫度如何影響固態水分子在碳基塵埃中的擴散以及碳基塵埃能提供的反應位點總數。
在本研究中,我們將水分子在不同的溫度(13 K到150 K)下沉積到碳基塵埃上,並分析在經過真空紫外光照射後所生成的含碳產物的產量。實驗結果顯示,產量在100 K以下保持恆定,約為0.006分子/光子,但在100 K以上開始顯著增加,並在150 K時達到約0.01分子/光子的生成速率。這表明了水分子在碳基塵埃中的擴散確實可以增加反應位點的數量,從而影響含碳產物的產量。此外,我們在碳基塵埃上沉積不同柱密度的固態水分子,以檢驗碳基塵埃能提供的有效位點數量。結果顯示,在13 K時其有效位點的數量約為56.6-77.8 ML。
摘要(英) Recently, carbonaceous dust (C-dust) aroused the interest of scientists in the laboratory astrophysics/astrochemistry field as it can be seen as a potential carbon supplier for some complex organic molecules (COMs) or their precursors. Several studies have confirmed new formation routes of CO and CO2 from interactions between H2O ice and C-dust after the vacuum ultraviolet (VUV) irradiation (Mennella et al. 2006; Shi et al. 2015). However, none offered insights into the morphology of the ice-covered dust. Is all the ice buried in the dust, or only a few layers? According to Potapov et al. (2023), this question is crucial since the number of reactive sites can highly affect the production yield of those C-bearing products. Therefore, this study aimed to understand how temperature impacts the diffusion of water molecules into the C-dust and the subsequent number of effective sites.
In this study, we deposited H2O ice at different temperatures ranging from 13 K to 150 K on the 13C-dust. Then, they were irradiated with VUV at 13 K. Our experiments showed that the production yield of 13C-products remains constant up to 100 K, with a value of around 0.006 molecules/photon, but increases significantly at temperatures above 100 K, reaching about 0.01 molecules/photon at 150 K. This highlights that the diffusion of H2O in the 13C-dust can influence the number of reactive sites, consequently affecting the production yield of 13C-products. Additionally, different column densities of H2O were deposited onto the 13C-dust to examine the number of effective sites provided by the 13C-dust. Results indicated that the effective site number of the 13C-dust is approximately 56.6-77.8 ML at 13 K.
關鍵字(中) ★ 天文物理
★ 天文化學
★ 星際冰晶
★ 水冰晶
★ 碳基塵埃
★ 真空紫外光誘發脫附
關鍵字(英) ★ Astrophysics
★ Astrochemistry
★ Interstellar ice
★ Water ice
★ Carbonaceous dust
★ VUV-induced desorption
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of figures vi
List of tables ix
Chapter 1. Introduction 1
Chapter 2. Experimental 4
2.1 Set-up 4
2.1.1 System structure 4
2.1.2 13C-dust preparation 7
2.2 Experimental method 8
Chapter 3. Results and discussion 12
3.1 H2O/13C-dust under VUV irradiation 12
3.1.1 Infrared spectroscopy 12
3.1.2 Photodepletion 15
3.2 H2O deposition temperature dependence 20
3.2.1 13CO and 13CO2 production 20
3.2.2 Diffusion of H2O in 13C-dust 24
3.3 H2O thickness dependence 31
3.3.1 13CO and 13CO2 production 31
3.3.2 Effective sites provided from 13C-dust 32
Chapter 4. Conclusions 41
Chapter 5. Appendix 44
A H2O Band strength derivation 44
B The diffusion of OH radicals 46
C Correction for re-cooling process 47
References 51
參考文獻 Basalgète, R., Rouillé, G., & Jäger, C. 2024, Astronomy & Astrophysics, 681, L10
Bergren, M. S., Schuh, D., Sceats, M. G., & Rice, S. A. 1978, The Journal of Chemical Physics, 69, 3477
Boogert, A. A., Gerakines, P. A., & Whittet, D. C. 2015, Annual Review of Astronomy and Astrophysics, 53, 541
Brown, D., & George, S. 1996, The Journal of Physical Chemistry, 100, 15460
Cecchi-Pestellini, C., & Aiello, S. 1992, Monthly Notices of the Royal Astronomical Society, 258, 125
Chen, Y.-J., et al. 2014, The Astrophysical Journal, 781, 15
Chuang, K.-J., et al. 2023, The Astrophysical Journal, 956, 57
Dupuy, R., Haubner, M., Henrist, B., Fillion, J.-H., & Baglin, V. 2020, Journal of Applied Physics, 128
Fulvio, D., Raut, U., & Baragiola, R. 2012, The Astrophysical Journal Letters, 752, L33
Furuya, K., Hama, T., Oba, Y., Kouchi, A., Watanabe, N., & Aikawa, Y. 2022, The Astrophysical Journal Letters, 933, L16
Gail, H.-P., & Sedlmayr, E. 2014, Physics and chemistry of circumstellar dust shells (Cambridge University Press)
Gerakines, P., Schutte, W., & Ehrenfreund, P. 1996, Astronomy and Astrophysics, v 312, p 289-305, 312, 289
Gerakines, P. A., Schutte, W., Greenberg, J., & van Dishoeck, E. F. 1994, arXiv preprint astro-ph/9409076
Gredel, R., Lepp, S., Dalgarno, A., & Herbst, E. 1989, The Astrophysical Journal, 347, 289
He, J., Clements, A. R., Emtiaz, S., Toriello, F., Garrod, R. T., & Vidali, G. 2019, The Astrophysical Journal, 878, 94
Herbst, E., & Van Dishoeck, E. F. 2009, Annual Review of Astronomy and Astrophysics, 47, 427
Hornig, D., White, H., & Reding, F. 1958, Spectrochimica acta, 12, 338
Jager, C., & Mutschke, H. 2008, The Astrophysical Journal, 689, 249
Jiménez-Escobar, A., Giuliano, B., Caro, G. M., Cernicharo, J., & Marcelino, N. 2014, The Astrophysical Journal, 788, 19
Johnson, R., & Quickenden, T. 1997, Journal of Geophysical Research: Planets, 102, 10985
Jones, B. M., Bennett, C. J., & Kaiser, R. I. 2011, The Astrophysical Journal, 734, 78
Jung, K.-H., Park, S.-C., Kim, J.-H., & Kang, H. 2004, The Journal of chemical physics, 121, 2758
Kouchi, A., & Kuroda, T. 1990, Nature, 344, 134
Lee, S. M., Lee, Y. H., Hwang, Y. G., Hahn, J., & Kang, H. 1999, Physical Review Letters, 82, 217
Leto, G., & Baratta, G. 2003, Astronomy & Astrophysics, 397, 7
Matsuura, M., et al. 2011, Science, 333, 1258
Mennella, V., Baratta, G., Palumbo, M., & Bergin, E. 2006, The Astrophysical Journal, 643, 923
Mennella, V., Palumbo, M., & Baratta, G. 2004, The Astrophysical Journal, 615, 1073
Miyazaki, A., Tsuge, M., Hidaka, H., Nakai, Y., & Watanabe, N. 2022, The Astrophysical Journal Letters, 940, L2
Munoz Caro, G. M., Ciaravella, A., Jiménez-Escobar, A., Cecchi-Pestellini, C., González-Díaz, C., & Chen, Y.-J. 2019, ACS Earth and Space Chemistry, 3, 2138
Öberg, K. I. 2016, Chemical reviews, 116, 9631
Öberg, K. I., Fuchs, G. W., Awad, Z., Fraser, H. J., Schlemmer, S., Van Dishoeck, E. F., & Linnartz, H. 2007, The Astrophysical Journal, 662, L23
Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009a, Astronomy & Astrophysics, 504, 891
Öberg, K. I., Linnartz, H., Visser, R., & Van Dishoeck, E. F. 2009b, The Astrophysical Journal, 693, 1209
Potapov, A., Jäger, C., & Henning, T. 2018, The Astrophysical Journal, 865, 58
---. 2020, Physical Review Letters, 124, 221103
Potapov, A., & McCoustra, M. 2021, International Reviews in Physical Chemistry, 40, 299
Potapov, A., Semenov, D., Jäger, C., & Henning, T. 2023, The Astrophysical Journal, 954, 167
Prasad, S. S., & Tarafdar, S. P. 1983, Astrophysical Journal, Part 1 (ISSN 0004-637X), vol 267, April 15, 1983, p 603-609 NASA-supported research, 267, 603
Radovic, L. R. 2009, Journal of the American Chemical Society, 131, 17166
Rowland, B., Fisher, M., & Devlin, J. P. 1991, The Journal of chemical physics, 95, 1378
Sabri, T., Baratta, G., Jäger, C., Palumbo, M. E., Henning, T., Strazzulla, G., & Wendler, E. 2015, Astronomy & Astrophysics, 575, A76
Sandford, S., Allamandola, L., Tielens, A., & Valero, G. 1988, Astrophysical Journal, Part 1 (ISSN 0004-637X), vol 329, June 1, 1988, p 498-510, 329, 498
Shi, J., Grieves, G., & Orlando, T. 2015, The Astrophysical Journal, 804, 24
Sie, N.-E., Caro, G. M., Huang, Z.-H., Martín-Doménech, R., Fuente, A., & Chen, Y.-J. 2019, The Astrophysical Journal, 874, 35
Sie, N.-E., Cho, Y.-T., Huang, C.-H., Caro, G. M. M., Hsiao, L.-C., Lin, H.-C., & Chen, Y.-J. 2022, The Astrophysical Journal, 938, 48
Westley, M., Baragiola, R., Johnson, R., & Baratta, G. 1995, Planetary and Space Science, 43, 1311
Whalley, E. 1977, Canadian journal of Chemistry, 55, 3429
指導教授 陳俞融(Yu-Jung Chen) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明