博碩士論文 111328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:18.222.168.170
姓名 林冠宇(Guan-Yu Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 柴式長晶法之爐體修改生長8吋矽單晶之熱場和流場與氧氣傳輸數值模擬
(Numerical simulation of thermal field, flow field and oxygen transport in modified Czochralski furnace to grow 8-inch silicon crystal)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究
★ 二段陽極處理法應用於鈦薄膜成長之研究★ 交流電發光二極體之接面溫度與熱阻量測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 在本研究使用數值模擬研究了在柴氏長晶法(Czochralski crystal growth,Cz)的過程中,爐體內的不同結構設計對熔湯內的熱場、流場和氧傳輸的影響,並在模擬中加入尖點形磁場。研究結果顯示,加大坩堝尺寸可以加大熔湯自由表面的面積並增加氧雜質的蒸發量,還可以降低熔湯和坩堝壁的接觸面積,進而減少氧雜質的析出。接著,透過縮短側加熱器長度,使得側加熱器的熱集中點遠離坩堝底部,因此坩堝底部的溫度降低,進而減少從坩堝壁底部析出的氧雜質,此區域也是晶體內氧雜質的主要來源。最後,透過在側加熱器下方加入L形絕緣層,此絕緣層可以避免熱散失,加強爐體的保溫效果,同時也可以解決熔湯中心底部發生過冷的問題,並且降低晶體內的熱應力和點缺陷,進而提升晶體品質。爐體結構設計優化後可以使晶體/熔湯界面的氧濃度比原先的爐體結構降低約6.6 ppma,且加熱器的功率也可以減少了約10.3%的能耗,而晶體中心的界面高度可以減少約6.3 mm。
摘要(英) This study uses a numerical simulation method to study the effects of different furnace structural designs on the thermal field, flow field and oxygen transport in the silicon melt during the Czochralski crystal growth process of a cusp-shaped magnetic field. The results showed that increasing the crucible size can enlarge the area of the free melt surface and increase the evaporation of oxygen impurities. It can also reduce the contact area between the silicon melt and the crucible wall, thereby decreasing the dissolution of oxygen impurities. Furthermore, by shortening the length of the side heater, the concentration point of heat from the side heater is moved far away from the bottom of the crucible, resulting in a decrease in temperature at the bottom crucible. Therefore, it reduces the oxygen impurities dissolved from the bottom crucible wall, which region serves as the primary source of oxygen impurities within the crystal. Finally, by adding the L-shaped insulation below the side heater, heat loss is prevented, thereby strengthening the insulation effect of the furnace. This also solves the problem of overcooling at the bottom of the silicon melt center and reduces thermal stress and point defects within the crystal, thereby improving crystal quality. Optimizing the furnace structure can reduce the oxygen concentration at the crystal/melt interface by approximately 6.6 ppma compared to the original furnace structure. Moreover, the power consumption of the heater can be reduced by approximately 10.3%, and the interface height at the center of the crystal can be decreased by about 6.3 mm.
關鍵字(中) ★ 柴氏長晶法
★ 坩堝設計
★ 加熱器設計
★ 絕緣層設計
關鍵字(英) ★ Cz
★ crucible design
★ heater design
★ insulation design
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1.1 研究背景 1
1.2 柴式長晶法 3
1.3 文獻回顧 5
1.4 研究目的與動機 8
第二章 物理模型與系統描述 9
2.1 物理模型 9
2.2 基本假設 13
2.3 統御方程式與邊界條件 13
2.3.1 統御方程式 13
2.3.2 邊界條件 15
第三章 研究方法 20
3.1 數值方法 20
3.2 網格收斂性測試 22
3.3 公差收斂性測試 25
第四章 結果與討論 27
4.1 不同石英坩堝尺寸比較 28
4.2 不同側加熱器長度比較 37
4.3 不同絕熱層形狀比較 47
4.4 比較不同的晶體長度 57
第五章 結論與未來方向 65
參考文獻 67
參考文獻 [1] J.-C. Ren, D. Liu, and Y. Wan, "Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies," Journal of Process Control, vol. 104, pp. 74-85, 2021.
[2] Y.-H. Hong, B.-W. Nam, and B.-C. Sim, "Effect of asymmetric magnetic fields on crystal–melt interface in silicon CZ process," Journal of crystal growth, vol. 366, pp. 95-100, 2013.
[3] C. Wang, H. Zhang, T. Wang, and T. Ciszek, "A continuous Czochralski silicon crystal growth system," Journal of Crystal Growth, vol. 250, no. 1-2, pp. 209-214, 2003.
[4] M. Poelzl, R. Haase, M. Roesch, S. Leomant, A. Meiser, B. Goller, and R. K. Joshi, "Oxygen inserted Si-layers for reduced substrate dopant outdiffusion in power devices," Patent Appl. US10741638B2, 2020.
[5] G. Fisher, M. R. Seacrist, and R. W. Standley, "Silicon crystal growth and wafer technologies," Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1454-1474, 2012.
[6] J. Li, J. Wang, L. Liu, Y. Wen, and C. Wang, "A novel approach to reduce the oxygen content in monocrystalline silicon by Czochralski method," Journal of Crystal Growth, vol. 630, p. 127608, 2024.
[7] S. Baik, A. Jeong, J. M. Kang, Y. Hahn, W.-J. Nam, and W. Nam, "Improved hot-zone for manufacturing low-oxygen silicon ingots for passivated emitter and rear cell," Japanese Journal of Applied Physics, vol. 57, no. 8S3, p. 08RB02, 2018.
[8] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, C.-C. Huang, W.-T. Wun, H.-I. Chen, C.-Y. Chen, W.-C. Lan, "Numerical simulation of the effect of heater position on the oxygen concentration in the CZ silicon crystal growth process," International Journal of Photoenergy, vol. 2012, 2012.
[9] B. Zhou, W. Chen, Z. Li, R. Yue, G. Liu, and X. Huang, "Reduction of oxygen concentration by heater design during Czochralski Si growth," Journal of Crystal Growth, vol. 483, pp. 164-168, 2018.
[10] Y. Mukaiyama, K. Sueoka, S. Maeda, M. Iizuka, and V. M. Mamedov, "Numerical analysis of effect of thermal stress depending on pulling rate on behavior of intrinsic point defects in large-diameter Si crystal grown by Czochralski method," Journal of Crystal Growth, vol. 531, p. 125334, 2020.
[11] O. A. Noghabi, M. Jomâa, and M. M′hamdi, "Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth," Journal of crystal growth, vol. 362, pp. 77-82, 2013.
[12] X. Qi, J. Wang, Y. Wen, and W. Ma, "Effect of water-cooled jacket on the oxygen transport during the Czochralski silicon crystal growth process," Journal of Crystal Growth, vol. 609, p. 127139, 2023.
[13] W. Zhao and L. Liu, "Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket," Journal of Crystal Growth, vol. 458, pp. 31-36, 2017.
[14] T.-H.-T. Nguyen, J.-C. Chen, "Effects of different cusp magnetic ratios and crucible rotation conditions on oxygen transport and point defect formation during Cz silicon crystal growth," Materials Science in Semiconductor Processing, vol. 128, p. 105758, 2021.
[15] X. Liu, L. Liu, Z. Li, and Y. Wang, "Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth," Journal of Crystal Growth, vol. 354, no. 1, pp. 101-108, 2012.
[16] H. Hirata and K. Hoshikawa, "Oxygen solubility and its temperature dependence in a silicon melt in equilibrium with solid silica," Journal of crystal growth, vol. 106, no. 4, pp. 657-664, 1990.
[17] A. Smirnov and V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals," Journal of Crystal Growth, vol. 310, no. 12, pp. 2970-2976, 2008.
[18] X. Liu, B. Gao, S. Nakano, and K. Kakimoto, "Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth," Journal of Crystal Growth, vol. 474, pp. 3-7, 2017.
[19] O. A. Noghabi, M. M′Hamdi, and M. Jomâa, "Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals," Journal of crystal growth, vol. 318, no. 1, pp. 173-177, 2011.
[20] D. Vizman, J. Friedrich, and G. Müller, "Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields," Journal of crystal growth, vol. 230, no. 1-2, pp. 73-80, 2001.
[21] J.-C. Chen, C. Hu, and C.-H. Chen, "Effects of crystal-crucible iso-rotation and a balanced/unbalanced cusp magnetic field on the heat, flow, and oxygen transport in a Czochralski silicon melt," Journal of Crystal Growth, vol. 531, p. 125373, 2020.
[22] K. Kakimoto, X. Liu, and S. Nakano, "Analysis of the Effect of Cusp‐Shaped Magnetic Fields on Heat, Mass, and Oxygen Transfer Using a Coupled 2D/3D Global Model," Crystal Research and Technology, vol. 57, no. 1, p. 2100092, 2022.
[23] R. Falster and V. Voronkov, "The engineering of intrinsic point defects in silicon wafers and crystals," Materials Science and Engineering: B, vol. 73, no. 1-3, pp. 87-94, 2000.
[24] H. J. Jeon, H. Park, G. Koyyada, S. Alhammadi, and J. H. Jung, "Optimal cooling system design for increasing the crystal growth rate of single-crystal silicon ingots in the Czochralski process using the crystal growth simulation," Processes, vol. 8, no. 9, p. 1077, 2020.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明