博碩士論文 111328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.119.159.246
姓名 林鈺珩(Yu-Heng Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 優化固態氧化物燃料電池之陽極微結構以提升電池性能之研究
(Optimization of Anode Microstructure in Solid Oxide Fuel Cells for Enhancing Performance)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 本研究探討一系列改善固態氧化物燃料電池陽極微結構之方法。透過改變陽極粉末壓錠克數控制陽極基板之厚度,達到縮短燃料氣體在基板中擴散的距離之目的。接著探討不同造孔劑的使用對電池性能的影響,使用聚甲基丙烯酸甲酯微球(PMMA)取代原始造孔劑Starch,由於PMMA具有單一粒徑及表面光滑之特性,相較於Starch顆粒粒徑不均且熱分解不穩定,PMMA陽極基板有助於改善陽極-電解質層之連接與增進基板其餘部份之氣體擴散。進一步調整PMMA在基板中之重量百分濃度,找到最佳之陽極基板孔隙率與氣體滲透率,以實現更高的功率密度。最後使用不同粒徑之PMMA微球,分析其陽極基板不同孔洞大小之微觀結構,並探討結構上的差異對氣體通道及電池性能之影響。
研究結果顯示,在保有一定陽極基板機械強度的前提下,減少陽極厚度確實縮短了氫氣在基板中的擴散距離,使電池性能提升(286.3 mW/cm2)。而因為PMMA與Starch型態上之差異,在更換造孔劑後使歐姆阻抗及低頻阻抗大幅下降,功率密度提升40.2%,達到401.5 mW/cm2。在分析PMMA重量百分濃度之研究中,得出最佳比例16.2wt%之造孔劑添加量,觀察其SEM圖像,隨著孔洞增加,成功改善陽極基板氣體擴散通道,並達到本研究之最高功率密度459.6 mW/cm2。最後探討固定重量比下3微米、5微米PMMA所帶來之結構差異,過小之微球會使陽極基板之孔洞大幅縮小導致氣體擴散不良, 使性能降低。最後探討不同流量之陽極、陰極側燃料對PMMA陽極電池的影響,並對其IV性能曲線及EIS交流阻抗進行分析。
摘要(英) This study investigates various methods to enhance the microstructure of anodes in solid oxide fuel cells (SOFCs). By altering the mass of anode powder pressed into pellets, the thickness of the anode substrate was controlled to shorten the diffusion distance of fuel gas within the substrate. Subsequently, the impact of different pore-former on cell performance was examined, replacing the original starch pore-former with polymethyl methacrylate (PMMA) microspheres. Due to the uniform particle size and smooth surface of PMMA compared to the uneven particle size and unstable thermal decomposition of starch, PMMA anode substrates help improve the anode-electrolyte layer connection and enhance gas diffusion in other parts of the substrate. Further adjustments were made to the weight percentage concentration of PMMA in the substrate to identify the optimal porosity and gas permeability of the anode substrate, achieving higher power density. Finally, PMMA microspheres of different particle sizes were used to analyze the microstructure of anode substrates with various pore sizes, and the effects of these structural differences on gas channels and cell performance were explored.
The results showed that reducing the anode thickness, while maintaining adequate mechanical strength, effectively shortened the hydrogen diffusion distance within the substrate, enhancing cell performance to 286.3 mW/cm². The change in pore-forming agent from starch to PMMA significantly reduced ohmic and low-frequency impedance, resulting in a 40.2% increase in power density to 401.5 mW/cm². Analysis of the weight percentage concentration of PMMA indicated that the optimal pore-forming agent addition was 16.2wt%. SEM images showed that with increased porosity, the gas diffusion pathways in the anode substrate were improved, achieving the highest power density of 459.6 mW/cm² in this study. Finally, the structural differences between 3 micron and 5 micron PMMA at a fixed weight ratio are discussed. Microspheres that are too small will significantly shrink the holes in the anode substrate, resulting in poor gas diffusion and reduced performance. Finally, the effects of different flow rates of fuel on the anode and cathode sides of the PMMA fuel cell were investigated. The IV curves and EIS impedance were analyzed.
關鍵字(中) ★ 固態氧化物燃料電池
★ 陽極微結構
★ 聚甲基丙烯酸甲酯(PMMA)
★ 造孔劑重量百分濃度
★ 造孔劑粒徑
★ 氣體擴散
關鍵字(英) ★ Solid Oxide Fuel Cell
★ Anode Microstructure
★ Polymethyl Methacrylate (PMMA)
★ Pore-Former Weight Percentage
★ Pore-Former Particle Size
★ Gas Diffusion
論文目次 碩博士論文電子檔授權書 II
延後公開申請書 III
論文指導教授推薦書 IV
論文口試委員審定書 V
摘要 VI
Abstract VIII
致謝 XI
目錄 XII
圖目錄 XVI
表目錄 XXI
第一章、緒論 1
1-1 前言 1
1-2 燃料電池 3
1-3 固態氧化物燃料電池 4
1-4 P-SOFC材料之特性 7
1-4-1 P-SOFC陽極材料 9
1-4-2 P-SOFC電解質材料 11
1-4-3 P-SOFC陰極材料 13
1-5 P-SOFC電池製備技術 15
1-5-1 刮刀成型技術(Tape casting methode) 16
1-5-2 乾壓成型技術(Dry pressing methode) 16
1-5-3 旋轉塗布技術(Spin coating methode) 17
1-5-4 絲網印刷技術(Screen printing methode) 18
1-6 研究目的 19
第二章、文獻回顧 20
2-1 陽極厚度對SOFC性能的影響 20
2-2 不同造孔劑材料對SOFC的影響 21
2-3 不同添加量與粒徑之造孔劑對SOFC的影響 23
第三章、實驗方法 26
3-1 實驗藥品 26
3-2 實驗製程設備 27
3-3 實驗流程與方法 28
3-3-1 電解質粉末製備 28
3-3-2 PMMA與Starch陽極粉末製備 29
3-3-3 陽極支撐型電池之基板製備 30
3-3-4 單電池製備 31
3-4 電池分析儀器 32
3-4-1 X光繞射儀(X-Ray Diffraction, XRD) 32
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 33
3-4-3 孔隙率量測 35
3-4-4 滲透率量測 35
3-4-5 燃料電池I-V性能量測與分析 36
3-4-6 電化學交流阻抗量測與分析 40
第四章、結果與討論 42
4-1 陽極基板厚度對電池性能之影響 42
4-1-1 陽極基板材料分析 42
4-1-2 Starch陽極電池I-V性能曲線量測與分析 43
4-1-3 Starch陽極電池交流阻抗量測與分析 45
4-2 不同造孔劑對電池性能之影響 48
4-2-1 不同造孔劑之陽極基板孔隙率分析 48
4-2-2 不同造孔劑之陽極基板氣體滲透率分析 49
4-2-3 Starch與PMMA陽極電池I-V性能曲線分析 52
4-2-4 Starch與PMMA陽極電池交流阻抗量測與分析 54
4-3 不同重量百分濃度之造孔劑PMMA 56
4-3-1 不同重量百分濃度之PMMA基板孔隙率分析 56
4-3-2 不同重量百分濃度之PMMA基板滲透率分析 57
4-3-3 不同重量百分濃度之PMMA基板微結構 58
4-3-4 不同重量百分濃度之PMMA陽極電池I-V性能曲線分析 62
4-3-5 不同重量百分濃度之PMMA陽極電池I-V交流阻抗分析 63
4-4 不同粒徑之造孔劑PMMA 67
4-4-1 不同粒徑之PMMA基板孔隙率分析 66
4-4-2 不同粒徑之PMMA基板滲透率分析 68
4-4-3 不同粒徑之PMMA基板微結構分析 69
4-4-4 不同粒徑之PMMA陽極電池I-V性能曲線分析 71
4-4-5 不同粒徑之PMMA陽極電池I-V交流阻抗分析 72
4-5 不同流量之陽極、陰極側燃料對PMMA陽極電池的影響 74
4-5-1 不同燃料流量之PMMA陽極電池I-V性能曲線分析 74
4-5-2 不同燃料流量之PMMA陽極電池交流阻抗分析 77
第五章、結論與未來規劃 84
5-1 結論 84
5-2 未來規劃 85
參考文獻 86
參考文獻 [1] https://wto.cnfi.org.tw/news_detail.php?c_id=51728
[2] https://www.sale-greenlabel.com/cn/news/major_trend/detail/225
[3] 黃莉婷、王婷虹,日本能源政策評析報告,工業技術研究院綠能與環境研究所,2022。
[4] https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811&upn=D34BDBBBF9103806
[5] https://e-info.org.tw/node/232807
[6] https://www.materialsnet.com.tw/DocView.aspx?id=24796
[7] https://outlook.stpi.narl.org.tw/index/focus-news/4b1141007e9ee4ea017f244005161728
[8] http://www.etop.org.tw/index.php?d=epp&c=epp13911&m=show&id=597
[9] https://www.thfcp.org.tw/xcindustry/cont?xsmsid=0L265415022626956988&qcat=0L265422226276623429&sid=0L354518951400830673
[10] https://cn-heipa.com/newsinfo/6466311.html
[11] https://www.moea.gov.tw/MNS/doit/publication/Publication.aspx?menu_id=13400&pub_id=5981
[12] 黃鎮江,燃料電池,台灣台中,滄海書局,2008。
[13] IEA, Technology Roadmap Hydrogen and Fuel Cells , 2015.
[14] Mridula Biswas, “Electrolyte Materials for Solid Oxide Fuel Cell”, J Powder Metall Min, Vol. 2 Issue. 3 1000e114, 2013.
[15] I. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[16] F. Liu, C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol. 13, 4736, 2021.
[17] H. Shi, C. Su, R. Ran,J. Cao,Z. Shao, “Electrolyte materials for intermediate-temperature solid oxide fuel cells”, Progress in Natural Science: Materials International, vol. 30, pp. 764-774, 2020.
[18] W. Tana,D. Huana,W. Yanga,N. Shia, W. Wanga, R. Peng, X. Wu, “A first-principles study on divergent reactions of using a Sr3Fe2O7 cathode in both oxygen ion conducting and proton conducting solid oxide fuel cell”, RSC Advances, vol. 8, pp. 26448-26460, 2018.
[19] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021
[20] I. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[21] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[22] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon,“The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, vol. 158, pp. 225-232, 2003.
[23] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 51, pp. 1-8, 2015.
[24] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells - Now and future”, Materials Reports: Energy, vol. 1, pp. 100003, 2021.
[25] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, vol. 45, pp. 23988-24013, 2020.
[26] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, vol. 47, pp. 19810-19820, 2022.
[27] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, vol. 3, pp. 113-121, 2001.
[28] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid‐Oxide Fuel Cell Technology”, ChemElectroChem, vol. 3, pp. 511-530, 2016.
[29] K. Xie, R. Yan, X. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[30] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, vol. 33, pp. 2826-2833, 2008.
[31] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,” Encyclopedia of Electrochem. Power Sources, 17-24, 2009.
[32] J. Rossmeisl, W. G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, vol. 178, pp. 1694-1700, 2008.
[33] B. H. Rainwater, M. Liu, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, vol. 37, pp. 18342-18348, 2012.
[34] J. J. Haslam, A. Q. Pham, B. W. Chung, J. F. DiCarlo, R. S. Glass, “Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell”, Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005.
[35] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, vol. 141, pp. 79-95, 2005.
[36] C. Sun and U. Stimming, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007.
[37] S. McIntosh and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chemical Reviews, vol. 104, pp. 4845-4866, 2004.
[38] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones, J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, vol. 179, pp. 2155-2159, 2008.
[39] A. Arabac, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, vol. 38, pp. 6509-6515, 2012.
[40] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, vol. 9, pp. 984-1011, 2021.
[41] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, vol. 18-19, pp. 1003-1007, 1986.
[42] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, vol. 168, pp. 299-310, 2004.
[43] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, vol. 143, 1996.
[44] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants”, Electrochemical and Solid-State Letters, vol. 10, pp. B77-B80, 2007.
[45] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[46] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 156, pp. 111985, 2022.
[47] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, vol. 47, pp. 1103-1120, 2022.
[48] C. M. Harrison, P. R. Slater, R. Steinberger-Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, vol. 354, pp. 115410, 2020.
[49] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, vol. 39, pp. 1014-1022, 2014.
[50] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, vol. 54, pp. 3309-3315, 2009.
[51] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, vol. 39, pp. 15754-15759, 2014.
[52] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells”, Journal of Power Sources, vol. 195, pp. 2747-2753, 2010.
[53] K. Xie, R. Q. Yan, X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[54] K. Huang, S. C. Singhal, “Cathode-supported tubular solid oxide fuel cell technology: A critical review”, Journal of Power Sources, vol. 237, pp.84-97, 2013.
[55] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, vol. 44, pp. 8296-8313, 2020.
[56] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt, “Preparation of Porosity–Graded SOFC Anode Substrates”, Fuel Cells, vol. 6, pp.113-116, 2006..
[57] J. W. Kim, A. V. Virkar, “The Effect of Anode Thickness on the Performance of Anode-Supported Solid Oxide Fuel Cells”, ECS Proceedings Volumes, vol. 1999-19, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), 1999.
[58] S. Y. Shin, D. K. Lim, T. Lee, S. Y. Jeon, “The Effect of the Anode Thickness on Electrolyte Supported SOFCs” , J. Electrochem. Sci. Technol, Korea Electric Power Corp. Research Institute, Daejeon 34056, 2022.
[59] A. Sarikaya, F. Dogan, “Effect of various pore formers on the microstructural development of tape-cast porous ceramics” , Ceramics International, Vol. 39, Issue 1, pp 403-413, 2013.
[60] L. Mingyi, Y. Bo, X. Jingming, C. Jing, “Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells” , International Journal of Hydrogen Energy, Vol. 35 , pp 2670-2674, 2010.
[61] M. A. L. Bercero, A. R. Hanifi, L. Menand, N. K. Sandhu, N. E. Anderson, T. H. Etsell, P. Sarkar, “The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes” , Electrochimica Acta, Vol. 268, pp 195-201, 2018.
[62] J. Zhou, Q. Liu, L. Zhang, Z. Pan, S. H. Chan, “Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting” , Energy, Vol. 115, pp 149-154, 2016.
[63] H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Challenge for lowering concentration polarization in solid oxide fuel cells”, Journal of Power Sources, Vol. 302, pp 53-60, 2016.
[64] B. A. Horri, C. Selomulya, H. Wang, “Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former”, International Journal of Hydrogen Energy, Vol. 37, Issue 20, pp 15311-15319, 2012.
[65] J. Hu, Z. Lü, K. Chen, X. Huang, N. Ai, X. Du, C. Fu, J. Wang, W. Su, “Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs”, Journal of Membrane Science, Vol. 318, Issues 1–2, pp 445-451, 2008.
[66] Y. Ostrovskiy, M. Saqib, J. Hong, E. Wachsman, “Optimization of SOFC Anode Microstructure for Performance and Highly Scalable Cells through Graded Porosity”, ECS Meeting Abstracts, Vol. MA2023-01, 2023.
[67] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, vol. 43, pp. 2423-2446, 2018.
[68] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016..
[69] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, vol. 25, pp. 185705, 2014.
[70] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, vol. 131, pp. 189-198, 2000.
[71] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, vol. 52, pp. 8144-8164, 2007.
[72] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, vol. 36, pp. 7212-7228, 2011.
[73] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, vol. 258, pp. 164-181, 2014.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明