博碩士論文 111328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.139.67.197
姓名 王永群(Yung-Chun Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 Al₂O₃ 與SiC 微米級顆粒添加對精密鑄造強化殼模的力學、熱學和物理性能的影響
(Effects of Al₂O₃ and SiC micro-scale powder addition on mechanical, thermal and physical properties of reinforced shell for investment casting)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 本研究探討在精密鑄造的背層漿料中添加15 wt% 的微米級 Al₂O₃ 和 SiC 粉末對陶瓷殼模機械、熱及物理性質的影響。結果顯示,在高層數下,添加 Al₂O₃ 和 SiC 粉末製成的陶瓷殼模的斷裂模數(MOR)分別達到 8.41 MPa 和 8.10 MPa,分別比原始配方的 6.66 MPa 高出 26.28% 和 21.62%。Al₂O₃ 陶瓷殼模的孔隙率較低(12%-15%),表面更加緻密。SiC 陶瓷殼模的孔隙率(13% 到 17%)與原始配方相似。儘管孔隙率相似,SiC 陶瓷殼模的透氣性較原始配方低,這是由於 SiC 顆粒影響了氣流;而 Al₂O₃ 殼模的透氣性最低,範圍為 1.3x10-¹³ m² 到 1.3x10-¹² m²,表面無可見孔隙且結構緻密。添加 Al₂O₃ 粉末顯著提高了 MOR,並減少了孔隙率和透氣性,而 SiC 粉末也提高了 MOR,但其孔隙率和透氣性高於 Al₂O₃ 陶瓷殼模。添加 Al₂O₃ 粉末和 SiC 粉末均提高了陶瓷殼模的 HTC。Al₂O₃ 殼模 HTC 的增加是由於其緻密結構和相對於鋯砂更高的熱導率;而 SiC 殼模 HTC 的增加則歸因於 SiC 粉末本身具有高熱導率。這些結果為優化精密鑄造陶瓷殼模配方提供了重要參考。
摘要(英) This study investigates the effect of adding 15 wt% of micro-scale Al₂O₃ and SiC powders to the backup coat slurry of investment casting on the mechanical, thermal and physical properties of shell molds. The results show that the modulus of rupture (MOR) of the shell molds made with Al₂O₃ and SiC powders reached 8.41 MPa and 8.10 MPa, respectively, at high layer counts, which were 26.28% and 21.62% higher than the original formulation of 6.66 MPa, respectively. The Al₂O₃ shell molds have a lower porosity (12%-15%) and a denser surface. The porosity of SiC shells (13% to 17%) was similar to that of the original formulation. Despite the similar porosity, the permeability of the SiC shells was lower than that of the original formulations due to the particles affecting the air flow, while the Al₂O₃ shells had the lowest permeability, ranging from 1.3x10-¹³ m² to 1.3x10-¹² m², with no visible pores on the surface and a dense structure. The addition of Al₂O₃ powder significantly increased the MOR and decreased porosity and permeability, while SiC powder also increased the MOR, but its porosity and permeability were higher than that of Al₂O₃ shell molds. Adding Al₂O₃ powder and SiC powder both enhance the HTC of the shell molds. The increased HTC in Al₂O₃ shell molds is due to their dense structure and the relatively higher thermal conductivity compared to zircon sand. The rise in HTC for SiC shell molds is attributed to the inherently high thermal conductivity of SiC powder. These results provide an important reference for the optimization of investment casting shell mold formulations.
關鍵字(中) ★ 精密鑄造
★ 殼模
★ 殼模層數
★ Al₂O₃和SiC粉末
★ 殼模斷裂模數(MOR)
★ 殼模孔隙率
★ 殼模透氣性
關鍵字(英) ★ investment casting
★ shell mold
★ Al₂O₃ and SiC powder
★ modulus of rupture (MOR)
★ porosity
★ permeability
★ heat transfer coefficient (HTC)
論文目次 摘 要 I
Abstract III
誌 謝 V
圖目錄 XI
表目錄 XV
第一章:緒論 1
1-1 前言 1
1-2 研究動機與方法 5
第二章:文獻回顧 7
2-1 精密鑄造 7
2-2 精密鑄造用殼模及其性能指標 7
2-3 殼模漿料添加物 8
2-4 傳熱係數對精密鑄造的影響 9
第三章:材料與實驗設置 10
3-1 實驗設備 10
第四章:原配方、Al2O3及SiC殼模測試結果與探討 19
4-1 材料與殼模製備 19
4-2 殼模性質測量與計算 22
4-2-1 斷裂模數 (Modulus of rupture, MOR) 22
4-2-2 殼模透氣性 (Permeability) 23
4-2-3 殼模孔隙率 (Porosity) 24
4-2-4 傳熱係數 (Heat transfer coefficient, HTC) 26
4-3 結果與討論 31
4-3-1 殼模MOR試驗之結果 31
4-3-2 孔隙率試驗之結果 33
4-3-3 殼模透氣性試驗之結果 35
4-3-3 殼模傳熱係數試驗之結果 37
4-3-4 MOR和透氣性的綜合討論 40
第五章:結論 42
參考文獻 45
第六章:附錄 48
6-1 精密鑄造渦流流量計設計方案與其缺陷說明 48
6-2 殼模熱性質(傳熱係數)與模擬 53
6-2-1 殼模熱性質 53
6-2-2 數值模擬 55
6-2-3 Niyama criterion 57
6-3 結果與討論 58
6-4 總結 67
參考文獻 [1] Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348.
[2] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology, 25, 308-320.
[3] Chen, T. Y., Wang, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., Chan, C. W., & Fuh, Y. K. (2024). Formation mechanism and improved remedy of thermal property of cold shut surface defects in Vortex Flow Meters: Numerical simulation and experimental verification in investment casting of 316 L stainless steel. Journal of Manufacturing Processes, 120, 542-554.
[4] Huang, P. H., Shih, L. K. L., Lin, H. M., Chu, C. I., & Chou, C. S. (2019). Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines. The International Journal of Advanced Manufacturing Technology, 104, 2911-2923.
[5] Jafari, H., Idris, M. H., & Ourdjini, A. (2013). A review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression. Materials and manufacturing processes, 28(8), 843-856.
[6] Kanyo, J. E., Schafföner, S., Uwanyuze, R. S., & Leary, K. S. (2020). An overview of ceramic molds for investment casting of nickel superalloys. Journal of the European Ceramic Society, 40(15), 4955-4973.
[7] Lü, K., Duan, Z., Liu, X., & Li, Y. (2019). Effects of fibre length and mixing routes on fibre reinforced shell for investment casting. Ceramics International, 45(6), 6925-6930.
[8] Yuan, C., Compton, D., Cheng, X., Green, N., & Withey, P. (2012). The influence of polymer content and sintering temperature on yttria face-coat moulds for TiAl casting. Journal of the European Ceramic Society, 32(16), 4041-4049.
[9] Wang, F., Li, F., He, B., & Sun, B. (2014). Microstructure and strength of needle coke modified ceramic casting molds. Ceramics International, 40(1), 479-486.
[10] Xu, W., Zhao, Y., Sun, S., Liu, M., Ma, D., Liang, X., ... & Tao, R. (2018). Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy. Materials Research Express, 5(4), 046504.
[11] Bai, Y., Xing, J., Ma, S., Huang, Q., He, Y., Liu, Z., & Gao, Y. (2013). Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al–20 wt.% Al2O3 composites. Materials characterization, 78, 69-78.
[12] Aruna, S. T., Balaji, N., Shedthi, J., & Grips, V. W. (2012). Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings. Surface and Coatings Technology, 208, 92-100.
[13] Oladijo, O. P., Popoola, A. P. I., Booi, M., Fayomi, J., & Collieus, L. L. (2020). Corrosion and mechanical behaviour Of Al2o3. Tio2 composites produced by spark plasma sintering. South African Journal of Chemical Engineering, 33, 58-66.
[14] Nakano, H., Watari, K., Kinemuchi, Y., Ishizaki, K., & Urabe, K. (2004). Microstructural characterization of high-thermal-conductivity SiC ceramics. Journal of the European Ceramic Society, 24(14), 3685-3690.
[15] Yun, S. I., Nahm, S., & Park, S. W. (2022). Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC. Ceramics International, 48(1), 1429-1438.
[16] Kim, Y. H., Kim, Y. W., & Seo, W. S. (2020). Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity. Journal of the European Ceramic Society, 40(7), 2623-2633.
[17] Małek, M., Wiśniewski, P., Matysiak, H., Zagórska, M., & Kurzydłowski, K. J. (2014). Technological properties of SiC-based ceramic slurries for manufacturing investment casting shell moulds. Archives of Metallurgy and Materials, 59(3), 1059-1062.
[18] Tseng, H. W., Chen, T. Y., Kao, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., ... & Fuh, Y. K. (2023). Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter. The International Journal of Advanced Manufacturing Technology, 127(5), 2371-2385.
[19] Srinivasa, R., & Patil, R. (2017). Characterization of Casting and Deformation Process of a Metal Alloy. International Research Journal of Engineering and Technology, 4(2).
[20] Zou, Y., & Malzbender, J. (2016). Development and optimization of porosity measurement techniques. Ceramics international, 42(2), 2861-2870.
[21] Pichler, P., Simonds, B. J., Sowards, J. W., & Pottlacher, G. (2020). Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel. Journal of Materials Science, 55(9), 4081-4093.
[22] Miyata, Y., Okugawa, M., Koizumi, Y., & Nakano, T. (2021). Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for additive manufacturing (AM). Crystals, 11(8), 856.
[23] Konrad, C. H., Brunner, M., Kyrgyzbaev, K., Völkl, R., & Glatzel, U. (2011). Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. Journal of Materials Processing Technology, 211(2), 181-186.
指導教授 傅尹坤 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明