博碩士論文 106388001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:3.144.93.6
姓名 洪郁涵(Yu-Han Hung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 功能化石墨烯基礎特性研究及其在能源與半導體的應用
(Study on the Fundamental Properties of Functionalized Graphene and Its Applications in Energy and Semiconductors)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 功能化與結構可控性之石墨烯比本質石墨烯帶來更多元材料特性,並有更廣的應用層面,特別是在能源轉換與前瞻半導體的領域帶來新的潛力應用。石墨烯應用於半導體領域上,需要晶圓級轉印技術方能達到高品質石墨烯。然而,過去轉印技術對大面積的完整性、潔淨度、缺陷、高分子殘留與金屬離子殘留等影響,導致半導體元件或高功率元件的應用受到限制。本研究開發並提供解決其關鍵技術,如快速且高潔淨低汙染的蝕刻法、提高大面積乾式轉印成功率、電化學輔助轉印等,所獲得石墨烯完整度與潔淨度在97%以上,0.54 ppb/cm2的金屬離子殘留。
此外,我們延續此技術,探討石墨烯引入功率半導體元件,用於降低接觸阻抗(contact resistance),發現當使用Ti/Al/Ni/Au歐姆層時,在高溫擴散反應下,與石墨烯在GaN介面形成TiC與TiN釘狀結構(spike)的過程,透過分析於本研究揭示其反應發生的機制與歐姆電阻之間的關係,而石墨烯可幫助將歐姆電阻降低至2.57×10-6 ohm•cm2 (無石墨烯為3.08×10-5 ohm•cm2)。
在能源方面,過去研究利用異質原子改質獲得高的產氫特性,並發展為非貴金屬系的高活性觸媒,但在原子級結構的可控性與特性的研究仍缺乏,此外也鮮有新型態商用化模組的研究。本論文研究提出共摻雜石墨烯複合觸媒,透過引入順序的不同,修復石墨烯缺陷提升電性之外,還增加創造更多析氫的吡啶活性位置(pyridinic-N),並將共摻雜石墨烯電極結合MoSx非貴金屬觸媒,得到優秀的析氫反應(Tafel slope: 42.9 mV/dec)和極低的電荷轉移電阻(2.0 ohm),利用雙電解液可將電解水的起始反應電壓降至0.89 V以獲取最高產氫效能。此外,也發展結合光轉換促觸媒,設計整合照光與電催化之產氫模組,將催化觸媒所需的電能結合光能,達到低能耗產氫。結果顯示,光電轉換氫氣與雙電解液的產氫效率提升四倍。
摘要(英) Functionalization and structural controllability of graphene offer more diverse material properties than intrinsic graphene and broader application prospects, especially in the fields of energy conversion and advanced semiconductors, where it brings new potential applications. To apply graphene in the semiconductor field, crystal wafer-level transfer technology is required to achieve high-quality graphene. However, the conventional transfer technology has been limited in terms of the integrity, cleanliness, defects, high molecular residue, and metal ion residue of large areas, which has hindered the application of semiconductor devices or high-power components. This study developed key technologies to address these issues, such as rapid and high-purity etching method with low-contamination, improving the yield rate of large-area dry transfer, and electrochemical-assisted transfer. The obtained graphene integrity and cleanliness are above 97%, with a metal ion residue of 0.54 ppb/cm². Furthermore, we extend this technology to explore the introduction of graphene into power semiconductor devices for reducing contact resistance (Rc), and find that the Ti/Al/Ni/Au ohmic layer uses a high-temperature diffusion reaction with graphene at the GaN interface to form TiC and TiN spike structures. Through analysis in this study, the mechanism of the reaction and the relationship between ohmic resistance are revealed. Graphene can help reduce the contact resistance to 2.57×10-6 ohm•cm2 (without graphene is 3.08×10-5 ohm•cm2).
In the energy applications, previous studies have focused on improving the hydrogen production characteristics of heterogeneous atoms and developing high-activity catalysts based on non-precious metal systems, but there has been a lack of research on the controllable and characteristic atomic-level structure. Here has been little research on the commercialization of new types of modules. This thesis proposes the development of a co-doped graphene composite catalyst, which not only repairs the defects in graphene to improve its electrical properties but also creates more active sites (pyridinic-N) by introducing the order in a controlled manner. The co-doped graphene electrode is then combined with the MoSx non-precious metal catalyst to achieve excellent hydrogen evolution reaction (42.9 mV/dec) and extremely low charge transfer resistence is 2.0 ohm. By using dual electrolytes to reduce the onset potential of water to 0.89 V, the highest hydrogen production efficiency can be achieved. Additionally, we also developed a system that combines photoconversion photocatalysis and designed an integrated photoelectrocatalytic hydrogen production module. This system combines the electrical energy required for the catalytic process with solar energy, achieving low-energy hydrogen production. The results show a fourfold increase in light utilization efficiency. 
關鍵字(中) ★ 石墨烯
★ 石墨烯轉印技術
★ 電化學析氫技術
★ PEM產氫模組
關鍵字(英)
論文目次 論文授權書 i
論文延後公開申請書 ii
指導教授推薦書 iii
審定書 iv
中文摘要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xii
表目錄 xviii
公式目錄 xix
ㄧ、緒論 1
二、研究背景與文獻回顧 3
2-1 石墨烯特性介紹 3
2-2 石墨烯合成方式 5
2-2-1 化學氣相沉積法(Chemical vapor deposition, CVD) 6
2-2-2 還原氧化石墨烯法 7
2-3 石墨烯轉移製程方法與優缺點 8
2-3-1 傳統溼式轉印 10
2-3-2乾式轉印 11
2-3-3電化學輔助剝離 15
2-4金屬殘留與背面石墨烯殘留 17
2-5 氫能與電轉氣(Power-to-Gas, P2G)技術 21
2-6 氫能源的種類與產氫技術介紹 22
2-6-1 蒸氣重組反應 (Steam reforming,SR) 23
2-6-2 烴熱解 (Hydrocarbon pyrolysis) 23
2-6-3 生質能 (Biomass) 25
2-6-4 水分解 (Water splitting) 25
2-7 析氫催化觸媒 27
2-7-1 非貴金屬催化觸媒 27
2-7-2 二硫化鉬(Molybdenum disulfide, MoS2) 28
2-7-3 無金屬改質石墨烯於電催化產氫的發展和應用 31
2-8 研究動機 35
三、實驗設置與研究規劃 36
3-1 實驗藥品與設備 36
3-1-1 藥品 36
3-1-2 分析儀器與設備 37
3-2 實驗流程 40
3-3 CVD石墨烯轉印流程 41
3-3-1 傳統溼式轉印 41
3-3-2 捲對捲與平壓系統之乾式轉印 42
3-3-3 UV捲對捲系統之乾式轉印 44
3-3-4 物理性去除背面石墨烯流程 45
3-3-5 化學性去除背面石墨烯流程 46
3-3-6 電化學輔助去除背面石墨烯流程 46
3-4 定義分析石墨烯薄膜的表面潔淨度及完整度 48
3-5 化學剝離石墨烯製備方式(Hummers’ method) 49
3-6 共摻雜石墨烯電極製作 51
3-6-1 氧化石墨烯複合碳布電極 51
3-6-2 磷摻雜石墨烯製程 51
3-6-3 氮摻雜石墨烯製程 52
3-7 非晶二硫化鉬複合氧化還原石墨烯於碳布上的析氫觸媒電極製作(MoSx/rGO/CC) 53
四、結果與討論 54
4-1 矽顆粒對石墨烯成長的影響 54
4-2 探討背面石墨烯與金屬離子殘留的處理方式 56
4-2-1 氧電漿對多核石墨烯的移除效果 56
4-2-2 兩階段式移除絲狀石墨烯 59
4-2-3 電化學輔助移除背面石墨烯 60
4-2-4 去除金屬離子殘留之研究 63
4-2-5 製程時間的差異性 69
4-3 石墨烯轉印完整性的提升 71
4-3-1 電漿處理對於轉印完整性的研究 71
4-3-2 晶圓級轉印石墨烯的製程整合 83
4-4 展示高品質石墨烯用於功率半導體的應用 91
4-4-1 結構分析 92
4-5 研究析氫材料與實際產氫模組之應用 103
4-5-1 非金屬類析氫觸媒材料之研究 103
4-5-2 非貴金屬析氫觸媒-硫化鉬結合摻雜石墨烯之複合電極 115
4-5-3 電催化水分解系統模組整合 119
4-5-4光電化學水解產氫模組特性分析 130
五、結論與未來展望 133
5-1 結論 133
5-2 未來工作 135
六、參考文獻 136
附錄_自傳介紹 145
參考文獻 [1] Novoselov, K.S., et al., "Electric field effect in atomically thin carbon films." science, Vol 306(5696), 2004, pp. 666-669.
[2] Qin, X., et al., "Recent progress in graphene-based electrocatalysts for hydrogen evolution reaction." Nanomaterials, Vol 12(11), 2022, pp. 1806.
[3] Dang, T.T., et al., "Oxidized Platinum Cocatalyst and Self-Assembled Graphene over Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution." ACS Applied Nano Materials, Vol 6(11), 2023, pp. 9825-9838.
[4] Hu, H. and J.-H. Choi, "Single-atom doped graphene for hydrogen evolution reactions." 2D Materials, Vol 10(3), 2023, pp. 035026.
[5] Ullah, S., et al., "Graphene transfer methods: A review." Nano Research, 2021, pp. 1-17.
[6] Georgakilas, V., et al., "Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures." Chemical reviews, Vol 115(11), 2015, pp. 4744-4822.
[7] Bazylewski, P. and G. Fanchini, "1.13-graphene: Properties and applications." Comprehensive Nanoscience and Nanotechnology, Vol 1, 2019, pp. 287-304.
[8] Shin, K.-Y., J.-Y. Hong, and J. Jang, "Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing." Chemical communications, Vol 47(30), 2011, pp. 8527-8529.
[9] Deng, B., et al., "Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes." Nano letters, Vol 15(6), 2015, pp. 4206-4213.
[10] Abouali, S., et al., "From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery." 2D Materials, Vol 8(3), 2021, pp. 035014.
[11] Chauhan, N., T. Maekawa, and D.N.S. Kumar, "Graphene based biosensors—Accelerating medical diagnostics to new-dimensions." Journal of Materials Research, Vol 32(15), 2017, pp. 2860-2882.
[12] Raccichini, R., et al., "The role of graphene for electrochemical energy storage." Nature materials, Vol 14(3), 2015, pp. 271-279.
[13] Kuila, T., et al., "Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials." Nanoscale, Vol 5(1), 2013, pp. 52-71.
[14] Munoz, R. and C. Gómez‐Aleixandre, "Review of CVD synthesis of graphene." Chemical Vapor Deposition, Vol 19(10-11-12), 2013, pp. 297-322.
[15] Dreyer, D.R., et al., "The chemistry of graphene oxide." Chemical society reviews, Vol 39(1), 2010, pp. 228-240.
[16] Deng, B., et al., "Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates." ACS nano, Vol 11(12), 2017, pp. 12337-12345.
[17] Rahman, M.M. and A.B. Nawabjan. Doped Graphene on Silicon Bottom Gated FET for High Drain Current and Applications in RF And Logic Circuits. in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). 2022. IEEE.
[18] Anvarifard, M.K., Z. Ramezani, and S.A. Ghoreishi, "A ballistic transport nanodevice based on graphene nanoribbon FET by enhanced productivity for both low-voltage and radio-frequency scopes." ECS Journal of Solid State Science and Technology, Vol 11(6), 2022, pp. 061008.
[19] Jiang, N., et al., "Plasmonic-enhanced efficiency of AlGaN-based deep ultraviolet LED by graphene/Al nanoparticles/graphene hybrid structure." Optics Letters, Vol 48(12), 2023, pp. 3175-3178.
[20] Zhang, H., et al., "Graphene as a transparent conductive electrode in GaN-based LEDs." Materials, Vol 15(6), 2022, pp. 2203.
[21] Lawal, A.T., "Recent developments in electrochemical sensors based on graphene for bioanalytical applications." Sensing and Bio-Sensing Research, 2023, pp. 100571.
[22] Gollapalli, R.P., T. Wei, and J. Reid, Application of Electric Bias to Enhance the Sensitivity of Graphene-Based Surface Plasmon Resonance Sensors, in Graphene-A Wonder Material for Scientists and Engineers. 2022, IntechOpen.
[23] Wang, M.C., et al., "A sustainable approach to large area transfer of graphene and recycling of the copper substrate." Journal of Materials Chemistry C, Vol 5(43), 2017, pp. 11226-11232.
[24] Sun, H., et al., "High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process." Journal of Materials Chemistry C, Vol 5(8), 2017, pp. 1880-1884.
[25] Goniszewski, S., et al., "Self‐supporting graphene films and their applications." IET Circuits, Devices & Systems, Vol 9(6), 2015, pp. 420-427.
[26] Grebel, H., et al., "Transfer of graphene with protective oxide layers." ChemEngineering, Vol 2(4), 2018, pp. 58.
[27] Kim, H.H., et al., "Wetting‐Assisted Crack‐and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies." Advanced Functional Materials, Vol 26(13), 2016, pp. 2070-2077.
[28] Liu, L., et al., "A mechanism for highly efficient electrochemical bubbling delamination of CVD‐grown graphene from metal substrates." Advanced Materials Interfaces, Vol 3(8), 2016, pp. 1500492.
[29] Song, Y., et al., "Graphene transfer: Paving the road for applications of chemical vapor deposition graphene." Small, Vol 17(48), 2021, pp. 2007600.
[30] Wang, Y., et al., "Plasma assisted approaches toward high quality transferred synthetic graphene for electronics." Nano Express, Vol 4(1), 2023, pp. 012001.
[31] Ma, L.P., W. Ren, and H.M. Cheng, "Transfer methods of graphene from metal substrates: A review." Small Methods, Vol 3(7), 2019, pp. 1900049.
[32] Shivayogimath, A., et al., "Do-it-yourself transfer of large-area graphene using an office laminator and water." Chemistry of Materials, Vol 31(7), 2019, pp. 2328-2336.
[33] Bae, S., et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature Nanotechnology, Vol 5(8), 2010, pp. 574-578.
[34] Kim, S.J., et al., "Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films." Nano Letters, Vol 15(5), 2015, pp. 3236-3240.
[35] Hung, Y.-H., et al., "Ultraclean and facile patterning of CVD graphene by a UV-light-assisted dry transfer method." ACS Applied Materials & Interfaces, Vol 15(3), 2023, pp. 4826-4834.
[36] Leong, W.S., et al., "Paraffin-enabled graphene transfer." Nature Communications, Vol 10, 2019, pp.
[37] Chandrashekar, B.N., et al., "Oil boundary approach for sublimation enabled camphor mediated graphene transfer." Journal of Colloid and Interface Science, Vol 546, 2019, pp. 11-19.
[38] Zhang, Z.K., et al., "Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes." Nature Communications, Vol 8, 2017, pp. 9.
[39] Choi, T., et al., "Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion." Nanoscale, Vol 7(16), 2015, pp. 7138-7142.
[40] Yang, X.J. and M.D. Yan, "Removing contaminants from transferred CVD graphene." Nano Research, pp. 12.
[41] Ullah, S., et al., "Graphene transfer methods: A review." Nano Research, pp. 17.
[42] Cherian, C.T., et al., "′Bubble-Free′ Electrochemical Delamination of CVD Graphene Films." Small, Vol 11(2), 2015, pp. 189-194.
[43] Lupina, G., et al., "Residual metallic contamination of transferred chemical vapor deposited graphene." ACS nano, Vol 9(5), 2015, pp. 4776-4785.
[44] Qing, F., et al., "Towards large-scale graphene transfer." Nanoscale, Vol 12(20), 2020, pp. 10890-10911.
[45] Yang, X., et al., "Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate." Journal of Electroanalytical Chemistry, Vol 688, 2013, pp. 243-248.
[46] Tichler, R. and S. Bauer, Chapter 18 - Power-to-Gas, in Storing Energy, T.M. Letcher, Editor. 2016, Elsevier: Oxford. p. 373-389.
[47] Ocenic, E.-L. and A. Tanţău, "Redefining the Hydrogen “Colours” based on Carbon Dioxide Emissions: A New Evidence-Based Colour Code." Proceedings of the International Conference on Business Excellence, Vol 17(1), 2023, pp. 111-121.
[48] Arcos, J.M.M. and D.M. Santos, "The hydrogen color spectrum: techno-economic analysis of the available technologies for hydrogen production." Gases, Vol 3(1), 2023, pp. 25-46.
[49] Balthasar, W., "Hydrogen production and technology: today, tomorrow and beyond." International Journal of Hydrogen Energy, Vol 9(8), 1984, pp. 649-668.
[50] Steinberg, M., THE TRAP OF LEGALITY: THE ASSOCIATION OF THE JEWS OF BELGIUM, in The Victims of the Holocaust, Volume 2. 1989.
[51] Nikolaidis, P. and A. Poullikkas, "A comparative overview of hydrogen production processes." Renewable and Sustainable Energy Reviews, Vol 67, 2017, pp. 597-611.
[52] Muradov, N.Z., "How to produce hydrogen from fossil fuels without CO2 emission." International Journal of Hydrogen Energy, Vol 18(3), 1993, pp. 211-215.
[53] Muradov, N., "Hydrogen via methane decomposition: an application for decarbonization of fossil fuels." International Journal of Hydrogen Energy, Vol 26(11), 2001, pp. 1165-1175.
[54] Demirbaş, A., "Biomass resource facilities and biomass conversion processing for fuels and chemicals." Energy Conversion and Management, Vol 42(11), 2001, pp. 1357-1378.
[55] Nowotny, J., et al., "Solar-hydrogen: Environmentally safe fuel for the future." International Journal of Hydrogen Energy, Vol 30(5), 2005, pp. 521-544.
[56] Ni, M., et al., "An overview of hydrogen production from biomass." Fuel Processing Technology, Vol 87(5), 2006, pp. 461-472.
[57] Steinfeld, A., "Solar thermochemical production of hydrogen––a review." Solar Energy, Vol 78(5), 2005, pp. 603-615.
[58] Zhang, Y., et al., "Electrolysis of the Bunsen Reaction and Properties of the Membrane in the Sulfur–Iodine Thermochemical Cycle." Industrial & Engineering Chemistry Research, Vol 53(35), 2014, pp. 13581-13588.
[59] Bamberger, C.E. and D.M. Richardson, "Hydrogen production from water by thermochemical cycles." Cryogenics, Vol 16(4), 1976, pp. 197-208.
[60] Rossmeisl, J., A. Logadottir, and J.K. Nørskov, "Electrolysis of water on (oxidized) metal surfaces." Chemical Physics, Vol 319(1), 2005, pp. 178-184.
[61] Levene, J.I., et al., "An analysis of hydrogen production from renewable electricity sources." Solar Energy, Vol 81(6), 2007, pp. 773-780.
[62] Zou, X. and Y. Zhang, "Noble metal-free hydrogen evolution catalysts for water splitting." Chemical Society Reviews, Vol 44(15), 2015, pp. 5148-5180.
[63] Nørskov, J.K., et al., "Trends in the Exchange Current for Hydrogen Evolution." Journal of The Electrochemical Society, Vol 152(3), 2005, pp. J23-J26.
[64] Trasatti, S., "Work function, electronegativity, and electrochemical behaviour of metals." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol 39(1), 1972, pp. 163-184.
[65] Jaramillo, T.F., et al., "Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts." Science, Vol 317(5834), 2007, pp. 100-102.
[66] Morales-Guio, C.G. and X. Hu, "Amorphous molybdenum sulfides as hydrogen evolution catalysts." Accounts of chemical research, Vol 47(8), 2014, pp. 2671-2681.
[67] Shao, M., et al., "Recent Advances in Electrocatalysts for Oxygen Reduction Reaction." Chemical Reviews, Vol 116(6), 2016, pp. 3594-3657.
[68] Wu, J. and D.K. Kwok, "Psychometric Properties of Attitudes towards Lesbians and Gay Men Scale with Chinese University Students." Psychological Reports, Vol 110(2), 2012, pp. 521-526.
[69] Dai, L., "Carbon-based catalysts for metal-free electrocatalysis." Current Opinion in Electrochemistry, Vol 4(1), 2017, pp. 18-25.
[70] Li, X., F.C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers." Physical Chemistry Chemical Physics, Vol 13(3), 2011, pp. 1162-1167.
[71] Gong, K., et al., "Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction." Science, Vol 323(5915), 2009, pp. 760-764.
[72] Shui, J., et al., "N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells." Science Advances, Vol 1(1), 2015, pp. e1400129.
[73] Zhao, Y., et al., "Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation." Nature Communications, Vol 4(1), 2013, pp. 2390.
[74] Liu, X. and L. Dai, "Carbon-based metal-free catalysts." Nature Reviews Materials, Vol 1(11), 2016, pp. 16064.
[75] Zhang, J., et al., "A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions." Nature Nanotechnology, Vol 10(5), 2015, pp. 444-452.
[76] Zheng, Y., et al., "Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution." ACS nano, Vol 8(5), 2014, pp. 5290-5296.
[77] Liu, J., et al., "Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway." Science, Vol 347(6225), 2015, pp. 970-974.
[78] Zhang, J., et al., "N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions." Angewandte Chemie International Edition, Vol 55(6), 2016, pp. 2230-2234.
[79] Men, B., et al., "Hierarchical Metal-Free Nitrogen-Doped Porous Graphene/Carbon Composites as an Efficient Oxygen Reduction Reaction Catalyst." ACS Applied Materials & Interfaces, Vol 8(2), 2016, pp. 1415-1423.
[80] Ito, Y., et al., "Bicontinuous Nanoporous N-doped Graphene for the Oxygen Reduction Reaction." Advanced Materials, Vol 26(24), 2014, pp. 4145-4150.
[81] Yang, H.B., et al., "Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst." Science Advances, Vol 2(4), 2016, pp. e1501122.
[82] Zhang, M. and H. Gao, "Interior controllability of semi-linear degenerate wave equations." Journal of Mathematical Analysis and Applications, Vol 457(1), 2018, pp. 10-22.
[83] Zhang, L.L., et al., "Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon." Energy & Environmental Science, Vol 5(11), 2012, pp. 9618-9625.
[84] Yang, S., et al., "Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions." Angewandte Chemie International Edition, Vol 50(23), 2011, pp. 5339-5343.
[85] Wu, J., et al., "Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction." ACS Applied Materials & Interfaces, Vol 7(27), 2015, pp. 14763-14769.
[86] Hu, C. and L. Dai, "Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution." Advanced Materials, Vol 29(9), 2017, pp. 1604942.
[87] Paul, R. and L. Dai, "Interfacial aspects of carbon composites." Composite Interfaces, Vol 25(5-7), 2018, pp. 539-605.
[88] Paul, R., et al., "Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery." RSC Advances, Vol 6(83), 2016, pp. 79734-79744.
[89] Marcano, D.C., et al., "Improved synthesis of graphene oxide." ACS nano, Vol 4(8), 2010, pp. 4806-4814.
[90] Liang, X., et al., "Toward clean and crackless transfer of graphene." ACS nano, Vol 5(11), 2011, pp. 9144-9153.
[91] Montillo, F. and P. Balk, "High‐Temperature Annealing of Oxidized Silicon Surfaces." Journal of The Electrochemical Society, Vol 118(9), 1971, pp. 1463.
[92] Huang, Y., et al., "Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials." ACS nano, Vol 9(11), 2015, pp. 10612-10620.
[93] Geng, D., et al., "Uniform hexagonal graphene flakes and films grown on liquid copper surface." Proceedings of the National Academy of Sciences, Vol 109(21), 2012, pp. 7992-7996.
[94] Niu, Y.-T., et al., "Inhomogeneous strain and doping of transferred CVD-grown graphene." Rare Metals, Vol 41(5), 2022, pp. 1727-1734.
[95] Liang, X., Z. Fu, and S.Y. Chou, "Graphene transistors fabricated via transfer-printing in device active-areas on large wafer." Nano letters, Vol 7(12), 2007, pp. 3840-3844.
[96] Nakatsuka, O., et al., "Crystalline structure of TiC ultrathin layers formed on highly oriented pyrolytic graphite by chemical reaction from Ti/graphite system." Japanese Journal of Applied Physics, Vol 55(6S3), 2016, pp. 06JE02.
[97] Luo, B., et al., "One-step in-situ reaction synthesis of TiC/graphene composite thin film for titanium foil surface reinforcement." Vacuum, Vol 160, 2019, pp. 472-477.
[98] MS, W., "Skeletal metal catalysts." Wiley-VCH: Weinheim, 1997, pp. 28-42.
[99] Massalski, T., "Phase diagrams in materials science." Metallurgical Transactions A, Vol 20, 1989, pp. 1295-1323.
[100] Chiu, Y.-S., et al., "Ti/Al/Ti/Ni/Au ohmic contacts on AlGaN/GaN high electron mobility transistors with improved surface morphology and low contact resistance." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol 32(1), 2014, pp.
[101] Thi Le, T.-L., et al., "Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material." Nanomaterials, Vol 11(1), 2021, pp. 76.
[102] Piña, L.E.I., et al., "Structural Analysis of TiC and TiC-C Core-Shell Nanostructures Produced by Pulsed-Laser Ablation." Journal of Materials Science and Chemical Engineering, Vol 11(07), 2023, pp. 1-13.
[103] Cao, C., et al., "Scalable Manufacturing of 10 nm TiC Nanoparticles through Molten Salt Reaction." Procedia Manufacturing, Vol 10, 2017, pp. 634-640.
[104] Chiu, Y.-S., et al., "Ti/Al/Ti/Ni/Au ohmic contacts on AlGaN/GaN high electron mobility transistors with improved surface morphology and low contact resistance." Journal of Vacuum Science & Technology B, Vol 32(1), 2014, pp.
[105] Chandran, N., et al., "The role of the Ti and Mo barrier layer in Ti/Al metallization to AlGaN/GaN heterostructures at identical process conditions: A structural and chemical characterization." Semiconductor Science and Technology, Vol 30(11), 2015, pp. 115011.
[106] Lucchese, M.M., et al., "Quantifying ion-induced defects and Raman relaxation length in graphene." Carbon, Vol 48(5), 2010, pp. 1592-1597.
[107] Ferrari, A.C. and D.M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene." Nature nanotechnology, Vol 8(4), 2013, pp. 235-246.
[108] Guo, B., et al., "Controllable N-doping of graphene." Nano letters, Vol 10(12), 2010, pp. 4975-4980.
[109] Das, A., et al., "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature nanotechnology, Vol 3(4), 2008, pp. 210-215.
[110] Yan, J., et al., "Electric field effect tuning of electron-phonon coupling in graphene." Physical review letters, Vol 98(16), 2007, pp. 166802.
[111] Dong, X., et al., "Doping single-layer graphene with aromatic molecules." Small, 2009, pp.
[112] Some, S., et al., "Highly air‐stable phosphorus‐doped n‐type graphene field‐effect transistors." Advanced materials, Vol 24(40), 2012, pp. 5481.
[113] Velez-Fort, E., et al., "Epitaxial graphene on 4H-SiC (0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer." ACS nano, Vol 6(12), 2012, pp. 10893-10900.
[114] Guo, D., et al., "Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts." Science, Vol 351(6271), 2016, pp. 361-365.
[115] Wang, X., et al., "Heteroatom-doped graphene materials: syntheses, properties and applications." Chemical Society Reviews, Vol 43(20), 2014, pp. 7067-7098.
[116] Ito, Y., et al., "High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction." Angew. Chem. Int. Ed., Vol 54(7), 2015, pp. 2131-2136.
[117] Shinde, S.S., A. Sami, and J.H. Lee, "Nitrogen‐and Phosphorus‐Doped Nanoporous Graphene/Graphitic Carbon Nitride Hybrids as Efficient Electrocatalysts for Hydrogen Evolution." Chem.Cat.Chem., Vol 7(23), 2015, pp. 3873-3880.
[118] Zhang, J., et al., "N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions." Angew. Chem. Int. Ed., Vol 55(6), 2016, pp. 2230-2234.
[119] Qu, K., et al., "Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms." ACS Nano, Vol 11(7), 2017, pp. 7293-7300.
[120] Zheng, Y., et al., "Hydrogen evolution by a metal-free electrocatalyst." Nature Communications, Vol 5, 2014, pp. 3783.
[121] Zhang, J., et al., "N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions." Angew Chem Int Ed Engl, Vol 55(6), 2016, pp. 2230-4.
[122] Yan, D., et al., "Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction." Journal of Materials Chemistry A, Vol 4(36), 2016, pp. 13726-13730.
[123] Hung, Y.-H. and C.-Y. Su, "Highly efficient electrocatalytic hydrogen production via MoSx/3D-graphene as hybrid electrode." International Journal of Hydrogen Energy, Vol 42(34), 2017, pp. 22091-22099.
[124] Chi, J.-Q., et al., "N, P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction." Catalysis Today, Vol 330, 2019, pp. 259-267.
[125] Wang, R., et al., "MOF-Derived Bifunctional Cu3P Nanoparticles Coated by a N,P-Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction." Advanced Materials, Vol 30(6), 2018, pp. 1703711.
[126] Lin, M.-Y., L.-W. Hourng, and K.-L. Chiou, "Parametric analysis of water electrolysis by dual electrolytes and cells." International journal of green energy, Vol 16(4), 2019, pp. 293-298.
[127] Awad, M., et al., "A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application." Alexandria Engineering Journal, Vol 87, 2024, pp. 213-239.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明