博碩士論文 111428032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.137.164.200
姓名 阮子杰(ZIH-JIE RUAN)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 比特幣崩盤風險與投資人意見分歧之關係
(Bitcoin crash risk and investor disagreement)
相關論文
★ 從巴塞爾協定三談商業銀行資金流動性穩健指標★ 三大法人於台灣期貨市場擇時能力之探討
★ 奢侈稅課徵對於台灣房價之影響★ 外匯曝險對台灣半導體產業之現金流量的影響
★ 金控法規範的利害關係人非授信交易之探討★ 歐債危機是否會影響台灣股市?以台灣指數股票型基金為例
★ 寬鬆貨幣政策對於歐元匯率的影響★ 影響境外人民幣和境內人民幣價差變化的因素
★ 台灣銀行業高階經理人薪酬與銀行特性之關連性分析★ 承銷業務對證券分析師盈餘預測之影響
★ 經紀業務對分析師盈餘預測影響★ 領導者或追隨者:被忽略公司分析師盈 餘預測行為之研究
★ 個別投資人日內交易損益:臺灣期貨市場實證分析★ 外匯市場私有訊息之程度對於匯率變動之影響
★ 外國機構投資人和外匯市場:以臺北外匯交易市場為例★ 散戶與三大法人之處份效果研究:以台灣加權股價指數期貨為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 本研究探討比特幣崩盤風險與投資人意見分歧之關係,利用Hong and Stein (1999)之投資人異質性 (heterogeneity) 模型解釋比特幣報酬率分配不對稱之現象。研究結果顯示,當投資人意見分歧程度愈高,比特幣市場發生崩盤 (crash) 的可能性愈大。本研究依循Chen, Hong and Stein (2001),定義崩盤風險為每日的日內報酬率負偏態程度,所使用的兩種測度分別為負偏態報酬係數 (NCSKEW) 與報酬上下波動比率 (DUVOL),並根據Huang et al. (2021)之方法,利用標準化未解釋交易量 (D_SUV) 衡量投資人意見分歧之程度。
此外,本研究發現當比特幣該日的崩盤風險愈大,隔日的投資人意見分歧程度愈低,因此,比特幣崩盤風險會影響隔日的投資人意見分歧程度,但不會在同期造成影響,故可推論兩者之間並不存在同期的雙向因果關係。最後,本研究發現COVID-19疫情期間、疫情之前、疫情之後三個子樣本期間中,比特幣崩盤風險與投資人意見分歧皆存在正向關聯性。
摘要(英) This study investigates the relationship between Bitcoin crash risk and investor disagreement. Utilizing the investor heterogeneity model by Hong and Stein (1999) to explain the asymmetry in the distribution of Bitcoin returns, we find that a higher level of investor disagreement increases the likelihood of a crash in the Bitcoin market. We define the crash risk as the degree of negative skewness in daily intraday returns, following Chen, Hong, and Stein (2001). Two measures of crash risk used in the analysis are the negative skewness coefficient of returns (NCSKEW) and the down-to-up volatility ratio (DUVOL). Following Huang et al. (2021), we use standardized unexplained trading volume (D_SUV) to measure the degree of investor disagreement.

Furthermore, the study finds that the higher Bitcoin crash risk on a given day leads to a lower level of investor disagreement on the following day. Hence, Bitcoin crash risk relates to next day′s level of investor disagreement, but there does not exist a contemporaneous relationship between crash risk and investor disagreement, suggesting no bi-directional contemporaneous. Finally, by dividing the sample into pre-, post-, and during-COVID 19 pandemic periods, we find that the positive relation between Bitcoin crash risk and investor disagreement holds in these three sub-sample periods.
關鍵字(中) ★ 比特幣
★ 崩盤風險
★ 意見分歧
★ 偏態
★ 交易量
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 v
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第二章 文獻回顧 5
第一節 比特幣在加密貨幣市場之定位 5
第二節 在股票及加密貨幣市場探討崩盤風險之相關研究文獻 7
第三節 在股票及加密貨幣市場探討意見分歧之相關研究文獻 10
第三章 研究方法 12
第一節 研究期間與資料來源 12
第二節 變數建構與說明 13
第四章 實證結果 18
第一節 敘述性統計 18
第二節 相關係數表 18
第三節 迴歸分析 19
第五章 結論與未來研究建議 23
參考文獻 25
參考文獻 Ajinkya, B. B., Atiase, R. K., & Gift, M. J. (1991). Volume of trading and the dispersion in financial analysts′ earnings forecasts. Accounting Review, 66(2), 389-401.
Akhtaruzzaman, M., Sensoy, A., & Corbet, S. (2020). The influence of Bitcoin on portfolio diversification and design. Finance Research Letters, 37, 101344.
Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56.
Anastasiou, D., Ballis, A., & Drakos, K. (2021). Cryptocurrencies′ price crash risk and crisis sentiment. Finance Research Letters, 42, 101928.
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4), 1593-1636.
Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross-section of expected returns. Journal of Financial Economics, 99(2), 427-446.
Biais, B., Bisiere, C., Bouvard, M., Casamatta, C., & Menkveld, A. J. (2023). Equilibrium bitcoin pricing. Journal of Finance, 78(2), 967-1014.
Blanchard, O. J., & Watson, M. W. (1982). Bubbles, rational expectations and financial markets. Working paper.
Chen, J., Hong, H., & Stein, J. C. (2001). Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. Journal of Financial Economics, 61(3), 345-381.
Choi, S., & Shin, J. (2022). Bitcoin: An inflation hedge but not a safe haven. Finance Research Letters, 46, 102379.
Christie, A.A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of Financial Economics, 10(4), 407-432.

Cong, L. W., Li, X., Tang, K., & Yang, Y. (2023). Crypto wash trading. Management Science, 69(11), 6427-6454.
Corbet, S., & Katsiampa, P. (2020). Asymmetric mean reversion of Bitcoin price returns. International Review of Financial Analysis, 71, 101267.
Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81-88.
Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all FEARS investor sentiment and asset prices. Review of Financial Studies, 28(1), 1-32.
Fernandes, L. H., Bouri, E., Silva, J. W., Bejan, L., & de Araujo, F. H. (2022). The resilience of cryptocurrency market efficiency to COVID-19 shock. Physica A: Statistical Mechanics and its Applications, 607, 128218.
Fry, J., & Cheah, E. T. (2016). Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis, 47, 343-352.
Garfinkel, J. A., Hsiaob, L., & Huc, D. (2024). The Negative Abnormal Volume Return Relation in Cryptocurrency. Working paper.
Garfinkel, A.J. (2009). Measuring investors′ opinion divergence. Journal of Accounting Research, 47(5), 1317-1348.
Hamilton, D.J. (2018). Why you should never use the Hodrick-Prescott filter. Review of Economics and Statistics, 100(5), 831-843.
Ha, T.L. (2023). Interlinkages of cryptocurrency and stock markets during COVID-19 pandemic by applying a TVP-VAR extended joint connected approach. Journal of Economic Studies, 50(3), 407-428.
Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum trading, and overreaction in asset markets. Journal of Finance, 54(6), 2143-2184.

Hong, H., & Stein, J. C. (2007). Disagreement and the stock market. Journal of Economic Perspectives, 21(2), 109-128.
Huang, D., Li, J., & Wang, L. (2021). Are disagreements agreeable? Evidence from information aggregation. Journal of Financial Economics, 141(1), 83-101.
Hutton, A. P., Marcus, A. J., & Tehranian, H. (2009). Opaque financial reports, R2, and crash risk. Journal of Financial Economics, 94(1), 67-86.
Kalyvas, A., Papakyriakou, P., Sakkas, A., & Urquhart, A. (2020). What drives Bitcoin′s price crash risk? Economics Letters, 191, 108777.
Kandel, E., & Pearson, N. D. (1995). Differential interpretation of public signals and trade in speculative markets. Journal of Political Economy, 103(4), 831-872.
Karpoff, M.J. (1987). The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis, 22(1), 109-126.
Ma, Y., & Luan, Z. (2022). Ethereum synchronicity, upside volatility and Bitcoin crash risk. Finance Research Letters, 46, 102352.
Miller, M.E. (1977). Risk, uncertainty, and divergence of opinion. The Journal of Finance, 32(4), 1151-1168.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Working paper.
Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelationconsistent covariance matrix. Econometrica, 55(3), 703-708.
Pindyck, S.R. (1984). Uncertainty in the theory of renewable resource markets. Review of Economic Studies, 51(2), 289-303.
Smales, A.L. (2022). Investor attention and cryptocurrency price crash risk: A quantile regression approach. Studies in Economics and Finance, 39(3), 490-505.
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
指導教授 高櫻芬 審核日期 2024-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明