博碩士論文 107690606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.219.242.150
姓名 阮銘(Minh Nguyen)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱
(Assessment and Prediction of Geological Hazards Using Space Observation)
相關論文
★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-30以後開放)
摘要(中) 地質災害發生頻率的增加,加上氣候變遷的惡化,對越南構成了重大的國家關注。越南被視為兩種主要地質災害——地面沉降和山崩——廣泛發生的熱點地區。這些災害通常在對基礎設施造成顯著影響並導致人員傷亡之前,往往不被察覺。雖然地面觀測在監測這些災害方面效果不佳,但整合衛星數據提供了一種可能更高效的解決方案。使用衛星數據的主要問題在於其實際應用和準確性。本論文的目標是展示衛星數據在檢測和管理人為地質災害方面的實際應用案例。通過適當的處理,衛星測量可以實現高精度的全球應用。此外,將地面觀測與衛星分析相結合,提供比單獨依賴任一方法更全面的研究。本論文展示了兩個利用衛星數據研究越南地質災害的案例。第二章使用干涉合成孔徑雷達(InSAR)技術研究河內市的長期沉降。我們處理了2007年至2018年間的多顆SAR衛星影像,提供連續的地面位移觀測。位移的時間序列顯示,郊區的顯著沉降與自1990年以來的地下水枯竭密切相關。二十多年來,地下水儲存的迅速減少,結合水文地質層的逐漸壓實,導致了延遲的沉降。為了改進沉降預測,我們應用一維擴散模型來確定這些層的特性,從而提高我們預測的準確性。此外,我們還探討了導致東南亞城市沉降的因素,以解決這一問題。在第三章中,我們重點評估了一個露天礦場的潛在地質災害。首先,我們利用攝影測量立體技術生成了多時期的光學衛星影像數字高程模型,揭示了廣寧省 Nui Beo 礦場二十年來的高度變化。隨後,我們發現礦場的顯著景觀改變,通過2015年至2021年的InSAR觀測,導致了附近住宅區的沉降。在露天礦場中,InSAR時間序列中水相關信號和位移趨勢的混合,對識別邊坡穩定性構成挑戰。為了解決這一問題,我們對信號進行分解以獲取校正後的位移時間序列。我們應用反速度法對校正後的位移進行評估,以評估邊坡不穩定性並估算潛在失敗的時間。最終,我們確定了應進行風險管理和預警監測的熱點地區。
摘要(英) The increasing frequency of geological hazards, worsened by climate change, poses a major national concern for Vietnam. The country stands out as a hotspot for widespread occurrences of two dominant geohazards: land subsidence and landslides. These hazards often remain unnoticed until they trigger pronounced impacts on infrastructure and result in casualties. While ground observation proves ineffective in monitoring these hazards, integrating satellite-based data offers a potentially more efficient solution. The primary concerns with utilizing satellite data are its practical application and accuracy levels. The objective of this thesis is to demonstrate practical use cases of satellite data in the detection and management of anthropogenic geohazards. With appropriate processing, satellite measurement can achieve high accuracy for practical applications worldwide. Furthermore, combining ground observations with satellite analysis offers a more comprehensive study than relying solely on either method. This thesis presents two cases demonstrating the utilization of satellite data to study geohazards in Vietnam. Chapter 2 examines the long-term subsidence in Hanoi city using Interferometric Synthetic Aperture Radar (InSAR) technology. We process multi-SAR satellites imagery to provide a continuous observation of ground displacement between 2007 and 2018. The time series of displacement reveals the significant subsidence in suburban strongly correlated with the depletion of groundwater since 1990. Over two decades, the rapid loss of groundwater storage, combined with the gradual compaction of hydrogeological layers, has resulted in delayed subsidence. To improve the subsidence prediction, we apply a one-dimensional diffusion model to determine properties of these layers, thereby enhancing the accuracy our predictions. Furthermore, we explore factors contributing to sinking cities in Southeast Asia to address the issue. In Chapter 3, we focus on assessing potential geohazards at an open-pit mining site. Initially, we employ photogrammetric stereo techniques to generate multi-temporal Digital Elevation Models from optical satellite images, unveiling two decades of elevation changes with the emergence of manmade slopes at the Nui Beo mining site in Quang Ninh province. Subsequently, we discover that significant landscape alterations at the mining site have led to subsidence in nearby residential areas, as detected through InSAR between 2015 and 2021. In the open-pit, the mixing of water-related signals and displacement trends in InSAR time series poses a challenge for identifying slope stability. To address this, we decompose the signal to retrieve corrected displacement time series. We apply the inverse velocity method on corrected displacement to assess slope instability and estimate the timing of potential failure. Ultimately, we identify hotspots that should be monitored for risk management and warning purposes.
關鍵字(中) ★ 冒險
★ 沉澱
★ 邊坡失穩
★ 太空觀測
★ InSAR
★ 造型
關鍵字(英) ★ hazard
★ subsidence
★ slope failure
★ space observation
★ InSAR
★ modelling
論文目次 Table of Contents
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 1
1.1 Ground subsidence 1
1.2 Hanoi subsidence 2
1.3 Slope failure 2
1.4 Slope failure over the Nui Beo open-pit mine 3
Chapter 2 4
Abstract 4
2.1 Introduction 4
2.2 Study Area 6
2.3 Data and Method 7
2.3.1 Surface subsidence from InSAR 7
2.3.2 Groundwater Level Changes 10
2.3.3 1D Coupled Diffusion Model 12
2.4 Results 15
2.4.1 Land subsidence 15
2.4.2 Groundwater level changes 19
2.4.3 1D compaction model 20
2.5 Discussion 24
2.5.1 Zoning of subsidence susceptibility in Hanoi 24
2.5.2 Sinking of major South East Asian cities in the early 21th century 26
2.6 Conclusions 29
Chapter 3 31
Abstract 31
3.1 Introduction 31
3.2 Study area 34
3.3 Methodology 35
3.3.1 Global Digital Elevation Model (GDEM) 35
3.3.2 Local Digital Elevation Model 36
3.3.3 Displacement monitoring 38
3.3.4 Empirical Mode Decomposition 39
3.3.5 Inverse velocity model 41
3.4 Results 43
3.4.1 DEM Change Map (DCM) 43
3.4.2 Ground displacement 45
3.4.3 InSAR Time-series Decomposition 48
3.4.4 Slope Instability Analysis 50
3.5 Discussions 52
3.5.1 Efficacy of high-resolution DEM in mining site monitoring 52
3.5.2 Applicability of the workflow in mining site monitoring 53
3.6 Conclusion 54
Chapter 4 Concluding Thoughts 55
Bibliography 56
參考文獻 [1] World Bank. 2019. Vietnam : Toward a Safe, Clean, and Resilient Water System.

[2] P. Q. Nhan, D. T. Trung and T. T. Le. 2019. Rationality of exploitation and use groundwater resources in Hanoi city. Scientific and Technical.

[3] D. D. Bui, A. Kawamura, T. N. Tong, H. Amaguchi and T. M. Trinh. 2012. Aquifer system for potential groundwater resources in Hanoi, Vietnam. Hydrological Processes, 26, 932-946, https://doi.org/10.1002/hyp.8305.

[4] T. C. Nguyen, V. G. Nguyen, Q. T. Phan and T. T. Dao. 2018. Evaluating The Impact of Groundwater Exploitation on Protected Aquifers in Hanoi. Technical Report.

[5] V. T. Tam and T. T. V. Nga. 2018. Assessment of urbanization impact on groundwater resources in Hanoi, Vietnam. Journal of environmental management, 227, 107-116, https://doi.org/10.1016/j.jenvman.2018.08.087.

[6] E. Chaussard, S. Wdowinski, E. Cabral-Cano and F. Amelung. 2014. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote sensing of environment, 140, 94-106, https://doi.org/10.1016/j.rse.2013.08.038.

[7] K. Terzaghi, R. B. Peck and G. Mesri. 1996. Soil mechanics in engineering practice. John Wiley & Sons.

[8] W.-C. Hung, C. Hwang, Y.-A. Chen, L. Zhang, K.-H. Chen, S.-H. Wei, D.-R. Huang and S.-H. Lin. 2018. Land subsidence in Chiayi, Taiwan, from compaction well, leveling and alos/palsar: Aquaculture-induced relative sea level rise. Remote Sensing, 10, 40, https://doi.org/10.3390/rs10010040.

[9] W.-C. Hung, C. Hwang, J.-C. Liou, Y.-S. Lin and H.-L. Yang. 2012. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology, 147, 78-90, https://doi.org/10.1016/j.enggeo.2012.07.018.

[10] V. T. Dao. 2011. Investigation and assessment of land subsidence in Hanoi. Technical Report.

[11] T. M. Thu and D. G. Fredlund. 2000. Modelling subsidence in the Hanoi City area, Vietnam. Canadian Geotechnical Journal, 37, 621-637, https://doi.org/10.1139/t99-126.

[12] V. K. Dang, C. Doubre, C. Weber, N. Gourmelen and F. Masson. 2014. Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data. Natural Hazards and Earth System Sciences Discussions, 14, 657, https://doi.org/10.5194/nhessd-1-6155-2013.

[13] D. H. T. Minh, Q. C. Tran, Q. N. Pham, T. T. Dang, D. A. Nguyen, I. El-Moussawi and T. Le Toan. 2019. Measuring Ground Subsidence in Ha Noi Through the Radar Interferometry Technique Using TerraSAR-X and Cosmos SkyMed Data. IEEE Journal of Selected Topics in Applied Earth Observations, 12, 3874-3884, https://doi.org/10.1109/JSTARS.2019.2937398.

[14] T. Q. Cuong, D. H. T. Minh and T. Le Toan. 2015. Ground subsidence monitoring in Vietnam by multi-temporal InSAR technique. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 3540-3543.

[15] T. S. Le, C.-P. Chang, X. T. Nguyen and A. Yhokha. 2016. TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sensing, 8, 338, https://doi.org/10.3390/rs8040338.

[16] M. Nguyen. 2018. Using Sentinel-1 TOPS SAR and SBAS for Land Subsidence Monitoring in Hanoi, Vietnam. National Central University, TW.

[17] M. Nguyen, Y. N. Lin, Q. C. Tran, C.-F. Ni, Y.-C. Chan, K.-H. Tseng and C.-P. Chang. 2022. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Engineering Geology, 299, 106555, https://doi.org/10.1016/j.enggeo.2022.106555.

[18] T. Fukuzono. 1985. A Method to Predict the Time of Slope Failure Caused by Rainfall Using the Inverse Number of Velocity of Surface Displacement. Landslides, 22, 8-13_1, 10.3313/jls1964.22.2_8.

[19] N. D. Rose and O. Hungr. 2007. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. International Journal of Rock Mechanics and Mining Sciences, 44, 308-320, https://doi.org/10.1016/j.ijrmms.2006.07.014.

[20] G. J. Dick, E. Eberhardt, A. G. Cabrejo-Liévano, D. Stead and N. D. Rose. 2014. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Canadian Geotechnical Journal, 52, 515-529, 10.1139/cgj-2014-0028.

[21] P. Berardino, G. Fornaro, R. Lanari and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE transactions on geoscience and remote sensing, 40, 2375-2383, https://doi.org/10.1109/TGRS.2002.803792.

[22] D. A. Schmidt and R. Bürgmann. 2003. Time‐dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2002JB002267.

[23] T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli. 2017. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides, 14, 517-534, 10.1007/s10346-016-0731-5.

[24] D. M. Franks, M. Stringer, L. A. Torres-Cruz, E. Baker, R. Valenta, K. Thygesen, A. Matthews, J. Howchin and S. Barrie. 2021. Tailings facility disclosures reveal stability risks. Scientific Reports, 11, 5353, 10.1038/s41598-021-84897-0.

[25] J. C. Santamarina, L. A. Torres-Cruz and R. C. Bachus. 2019. Why coal ash and tailings dam disasters occur. Science, 364, 526-528, 10.1126/science.aax1927.

[26] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung and H. H. Liu. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995, doi:10.1098/rspa.1998.0193.

[27] T. van der Horst, M. M. Rutten, N. C. van de Giesen and R. F. Hanssen. 2018. Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms. Remote Sensing of Environment, 217, 101-110, https://doi.org/10.1016/j.rse.2018.08.004.

[28] L. Ge, A. H.-M. Ng, X. Li, H. Z. Abidin and I. Gumilar. 2014. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 154, 46-60, https://doi.org/10.1016/j.rse.2014.08.004.

[29] H. Z. Abidin, H. Andreas, I. Gumilar, Y. Fukuda, Y. E. Pohan and T. Deguchi. 2011. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59, 1753, https://doi.org/10.1007/s11069-011-9866-9.

[30] GSO. 2019. Vietnam population and housing census. General Statistics Office.

[31] D. P. Hoang, B. Q. Pham and T. T. Dao. 2017. Assessment of groundwater reserve in Hanoi. Technical Report.

[32] J. Glass, D. A. Via Rico, C. Stefan and T. T. V. Nga. 2018. Simulation of the impact of managed aquifer recharge on the groundwater system in Hanoi, Vietnam. Hydrogeology Journal, 26, 2427-2442, https://doi.org/10.1007/s10040-018-1779-1.

[33] D. P. Hoang, B. Q. Pham, T. T. Dao and V. T. Le. 2017. Hydrogeological Structures of Protected Aquifers in Hanoi. Technical Report.

[34] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank and D. Alsdorf. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, https://doi.org/10.1029/2005RG000183.

[35] V. H. Vu and B. J. Merkel. 2019. Estimating groundwater recharge for Hanoi, Vietnam. Science of The Total Environment, 651, 1047-1057, https://doi.org/10.1016/j.scitotenv.2018.09.225.

[36] A. Hooper. 2008. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL034654.

[37] A. Hooper, P. Segall and H. Zebker. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112, https://doi.org/10.1029/2006JB004763.

[38] P. S. Agram, R. Jolivet, B. Riel, Y. N. Lin, M. Simons, E. Hetland, M. P. Doin and C. Lasserre. 2013. New Radar Interferometric Time Series Analysis Toolbox Released. Eos, Transactions American Geophysical Union, 94, 69-70, https://doi.org/10.1002/2013EO070001.

[39] F. De Zan and G. Gomba. 2018. Vegetation and soil moisture inversion from SAR closure phases: First experiments and results. Remote sensing of environment, 217, 562-572, https://doi.org/10.1016/j.rse.2018.08.034.

[40] H. Ansari, F. D. Zan and A. Parizzi. 2020. Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 59, 1285-1301, https://doi.org/10.1109/TGRS.2020.3003421.

[41] H. Ansari, F. D. Zan and R. Bamler. 2017. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55, 5637-5652, https://doi.org/10.1109/TGRS.2017.2711037.

[42] R. Jolivet, P. S. Agram, N. Y. Lin, M. Simons, M.-P. Doin, G. Peltzer and Z. Li. 2014. Improving InSAR geodesy using Global Atmospheric Models. Journal of Geophysical Research: Solid Earth, 119, 2324-2341, https://doi.org/10.1002/2013JB010588.

[43] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume and J.-N. Thépaut. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803.

[44] Q. C. Tran. 2016. Subsidence monitoring in Ha Noi by differential InSAR. Vietnam National Science Project Code DTDL.2012-T/28.

[45] R. F. Hanssen. 2001. Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.

[46] G. Blewitt, W. C. Hammond and C. Kreemer. 2018. Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, https://doi.org/10.1029/2018EO104623.

[47] NAWAPI. 2008. National Center for Water Resources Planning and Investigation.

[48] D. C. Helm. 1975. One-dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resources Research, 11, 465-478, https://doi.org/10.1029/WR011i003p00465.

[49] M. Béjar-Pizarro, P. Ezquerro, G. Herrera, R. Tomás, C. Guardiola-Albert, J. M. Ruiz Hernández, J. A. Fernández Merodo, M. Marchamalo and R. Martínez. 2017. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology, 547, 678-689, https://doi.org/10.1016/j.jhydrol.2017.02.011.

[50] D. Galloway, D. R. Jones and S. E. Ingebritsen. 1999. Land Subsidence in the United States. U.S. Geological Survey.

[51] R. G. Smith, R. Knight, J. Chen, J. Reeves, H. Zebker, T. Farr and Z. Liu. 2017. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resources Research, 53, 2133-2148, https://doi.org/10.1002/2016WR019861.

[52] W.-C. Hung, C. Hwang, M. Sneed, Y.-A. Chen, C.-H. Chu and S.-H. Lin. 2021. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resources Research, 57, https://doi.org/10.1029/2020WR028194.

[53] M. Chlieh, J.-P. Avouac, V. Hjorleifsdottir, T.-R. A. Song, C. Ji, K. Sieh, A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock and J. Galetzka. 2007. Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra–Andaman Earthquake of 2004. Bulletin of the Seismological Society of America, 97, S152-S173, https://doi.org/10.1785/0120050631.

[54] F. S. Riley. 1969. Analysis of borehole extensometer data from central California. Land subsidence, 2, 423-431, http://hydrologie.org/redbooks/a088/088047.pdf.

[55] Y. Yamada, T. Tsuchida, N. M. Kyaw, T. Aoyama, M. M. S. Hlaing and R. Hashimoto. 2019. A study on physical and mechanical properties for soft to firm clays in Yangon area – Properties of clays deposit at the sedimentary basins in Myanmar. Soils and Foundations, 59, 2279-2298, https://doi.org/10.1016/j.sandf.2019.05.008.

[56] G. Gomba, A. Parizzi, F. D. Zan, M. Eineder and R. Bamler. 2016. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Transactions on Geoscience and Remote Sensing, 54, 1446-1461, https://doi.org/10.1109/TGRS.2015.2481079.

[57] M. Sneed. 2001. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California Report 2001-35.

[58] T. T. Thoang and P. H. Giao. 2015. Subsurface characterization and prediction of land subsidence for HCM City, Vietnam. Engineering Geology, 199, 107-124, https://doi.org/10.1016/j.enggeo.2015.10.009.

[59] S. Kaneko and T. Toyota. 2011. Long-Term Urbanization and Land Subsidence in Asian Megacities: An Indicators System Approach. Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities, 249-270, https://doi.org/10.1007/978-4-431-53904-9_13.

[60] E. Chaussard, F. Amelung, H. Abidin and S.-H. Hong. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161, https://doi.org/10.1016/j.rse.2012.10.015.

[61] D. Raucoules, G. Le Cozannet, G. Wöppelmann, M. de Michele, M. Gravelle, A. Daag and M. Marcos. 2013. High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement. Remote Sensing of Environment, 139, 386-397, https://doi.org/10.1016/j.rse.2013.08.021.

[62] D. H. Minh, L. Van Trung and T. L. Toan. 2015. Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data. Remote Sensing, 7, https://doi.org/10.3390/rs70708543.

[63] N. Phien-wej, P. H. Giao and P. Nutalaya. 2006. Land subsidence in Bangkok, Thailand. Engineering Geology, 82, 187-201, https://doi.org/10.1016/j.enggeo.2005.10.004.

[64] H. Kooi and G. Erkens. 2020. Creep consolidation in land subsidence modelling; integrating geotechnical and hydrological approaches in a new MODFLOW package (SUB-CR). Proc. IAHS, 382, 499-503, https://doi.org/10.5194/piahs-382-499-2020.

[65] K. K. Khaing. 2016. Chapter 14 - Groundwater Environment in Yangon, Myanmar. Groundwater Environment in Asian Cities, 317-335, https://doi.org/10.1016/B978-0-12-803166-7.00014-3.

[66] A. Aobpaet, M. C. Cuenca, A. Hooper and I. Trisirisatayawong. 2013. InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34, 2969-2982, https://doi.org/10.1080/01431161.2012.756596.

[67] M. S. Babel, A. A. Rivas and S. Kallidaikurichi. 2010. Municipal Water Supply Management in Bangkok: Achievements and Lessons. International Journal of Water Resources Development, 26, 193-217, https://doi.org/10.1080/07900621003710661.

[68] R. S. Clemente, G. Q. Tabios, R. P. Abracosa, C. C. David and A. B. Inocencio. 2001. Groundwater supply in Metro Manila: Distribution, environmental and economic assessment. Discussion Paper Series, 2001–2006. PIDS.

[69] NWRB. 2004. Water resources assessment for prioritized critical areas (phase I): Final report Metro Manila. National Water Resources Board.

[70] W. Mijał. 2018. Coal mining and coal preparation in Vietnam. Inżynieria Mineralna, 19

[71] N. Quynh Nga, N. Van Hau, P. Tu Phuong and C. H. U. Thi Khanh Ly. 2021. Current Status of Coal Mining and Some Highlights in the 2030 Development Plan of Coal Industry in Vietnam. Inżynieria Mineralna, 1, 10.29227/IM-2021-02-34.

[72] Y. N. Lin, E. Park, Y. Wang, Y. P. Quek, J. Lim, E. Alcantara and H. H. Loc. 2021. The 2020 Hpakant Jade Mine Disaster, Myanmar: A multi-sensor investigation for slope failure. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 291-305, https://doi.org/10.1016/j.isprsjprs.2021.05.015.

[73] T. B. Standard. 2023. Four killed in Vietnam coal mine collapse. The Business Standard.

[74] Lao-Dong. 2023. Worker′s body found in accident in Southeast Asia′s deepest coal mine. Lao Dong.

[75] M. Uysal, A. S. Toprak and N. Polat. 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543, https://doi.org/10.1016/j.measurement.2015.06.010.

[76] J. Xiang, J. Chen, G. Sofia, Y. Tian and P. Tarolli. 2018. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental Earth Sciences, 77, 220, 10.1007/s12665-018-7383-9.

[77] H. Ren, Y. Zhao, W. Xiao and Z. Hu. 2019. A review of UAV monitoring in mining areas: current status and future perspectives. International Journal of Coal Science & Technology, 6, 320-333, 10.1007/s40789-019-00264-5.

[78] A. C. Pandey and A. Kumar. 2014. Analysing topographical changes in open cast coal-mining region of Patratu, Jharkhand using CARTOSAT-I Stereopair satellite images. Geocarto International, 29, 731-744, 10.1080/10106049.2013.838309.

[79] J. Takaku, T. Tadono and K. Tsutsui. 2014. Generation of High Resolution Global DSM from ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-4, 243-248, 10.5194/isprsarchives-XL-4-243-2014.

[80] N. Casagli, E. Intrieri, V. Tofani, G. Gigli and F. Raspini. 2023. Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4, 51-64, 10.1038/s43017-022-00373-x.

[81] A. C. Mondini, F. Guzzetti, K.-T. Chang, O. Monserrat, T. R. Martha and A. Manconi. 2021. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216, 103574, https://doi.org/10.1016/j.earscirev.2021.103574.

[82] E. Intrieri, T. Carlà and G. Gigli. 2019. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Science Reviews, 193, 333-349, https://doi.org/10.1016/j.earscirev.2019.03.019.

[83] E. Tymofyeyeva and Y. Fialko. 2015. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. Journal of Geophysical Research: Solid Earth, 120, 5952-5963, https://doi.org/10.1002/2015JB011886.

[84] E. Fahrland, P. Jacob, H. Schrader and H. Kahabka. 2020. Copernicus DEM Product Handbook. Airbus defence and space, version, 2, https://doi.org/10.5270/ESA-c5d3d65.

[85] M. Lachaise, C. González, P. Rizzoli, B. Schweiβhelm and M. Zink. 2022. The New Tandem-X DEM Change Maps Product. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 5432-5435.

[86] B. U. I. Xuan Nam, N. Hoang, T. Quang Hieu, B. U. I. Hoang Bac, N. Quoc Long, N. Dinh An, L. E. Thi Thu Hoa and P. Van Viet. 2022. A Lasso and Elastic-Net Regularized Generalized Linear Model for Predicting Blast-Induced Air Over-pressure in Open-Pit Mines. Inżynieria Mineralna, 2, 10.29227/IM-2019-02-52.

[87] UNESCO. 1994. Ha Long Bay - Cat Ba Archipelago. UNESCO Workd Heritage Centre 1992 - 2024.

[88] R. Crippen, S. Buckley, P. Agram, E. Belz, E. Gurrola, S. Hensley, M. Kobrick, M. Lavalle, J. Martin, M. Neumann, Q. Nguyen, P. Rosen, J. Shimada, M. Simard and W. Tung. 2016. NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 125-128, 10.5194/isprs-archives-XLI-B4-125-2016.

[89] B. Wessel. 2018. TanDEM-X ground segment–DEM products specification document. https://tandemx-science.dlr.de/.

[90] T.-N.-D. Tran, B. Q. Nguyen, N. D. Vo, M.-H. Le, Q.-D. Nguyen, V. Lakshmi and J. D. Bolten. 2023. Quantification of global Digital Elevation Model (DEM) – A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology: Regional Studies, 45, 101282, https://doi.org/10.1016/j.ejrh.2022.101282.

[91] Y. Liu, N. Pears, P. L. Rosin and P. Huber. 2020. 3D imaging, analysis and applications. Springer.

[92] H. Hasegawa, K. Matsuo, M. Koarai, N. Watanabe, H. Masaharu and Y. Fukushima. 2000. DEM accuracy and the base to height (B/H) ratio of stereo images. International Archives of Photogrammetry and Remote Sensing, 33, 356-359, https://www.isprs.org/proceedings/xxxiii/congress/part4/356_XXXIII-part4.pdf.

[93] S. Ghuffar. 2018. DEM Generation from Multi Satellite PlanetScope Imagery. Remote Sensing.

[94] A. Metashape. 2023. AgiSoft Metashape Professional (Version 2.1.1) (Software). (2023*).

[95] H. Fattahi, P. S. Agram, E. Tymofyeyeva and D. P. Bekaert. 2019. FRInGE; Full-Resolution InSAR timeseries using Generalized Eigenvectors. G11B-0514.

[96] E. Tymofyeyeva, P. S. Agram, H. Fattahi and D. P. Bekaert. 2019. Transient creep on the Concord Fault, Eastern Bay Area, revealed by InSAR time series. T13D-0304.

[97] C. Yu, Z. Li, N. T. Penna and P. Crippa. 2018. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123, 9202-9222, https://doi.org/10.1029/2017JB015305.

[98] G. Wang, X.-Y. Chen, F.-L. Qiao, Z. Wu and N. E. Huang. 2010. ON INTRINSIC MODE FUNCTION. Advances in Adaptive Data Analysis, 02, 277-293, 10.1142/S1793536910000549.

[99] M. Saito. 1969. Forecasting time of slope failure by tertiary creep. Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico City, Mexico. Citeseer, 677-683.

[100] B. Voight. 1988. A method for prediction of volcanic eruptions. Nature, 332, 125-130, 10.1038/332125a0.

[101] P. Roy, T. R. Martha, K. Khanna, N. Jain and K. V. Kumar. 2022. Time and path prediction of landslides using InSAR and flow model. Remote Sensing of Environment, 271, 112899, https://doi.org/10.1016/j.rse.2022.112899.

[102] T. Carlà, P. Farina, E. Intrieri, H. Ketizmen and N. Casagli. 2018. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology, 235, 39-52, https://doi.org/10.1016/j.enggeo.2018.01.021.
指導教授 林玉儂 張中白(Yunung Nina Lin Chung-Pai Chang) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明