參考文獻 |
Adegboye, O. A., Leung, D. H., and Wang, Y. G. (2018). Analysis of spatial data with a nested correlation structure. Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, 329-354.
Agarwal, D. K., Gelfand, A. E., and Citron-Pousty, S. (2002). Zero-inflated models with application to spatial count data. Environmental and Ecological Statistics, 9, 341-355.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. International Symposium on Information Theory, eds. V. Petrov, and F. Cs´aki, Budapest: Akad´emiai Kiad´o, 267-281.
Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B, 70, 825-848.
Böhning, D., Dietz, E., Schlattmann, P., Mendonga, L., and Kirchner, U. (1999). The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society. Series A (Statistics in Society), 162, 195-209.
Cressie, N. (1993). Statistics for Spatial Data (revised edition). New York: Wiley.
Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B, 70, 209-226.
Farewell, V. T. and Sprott, D. A. (1988). The use of a mixture model in the analysis of count data. Biometrics, 44, 1191-1194.
Green, P. J. and Silverman, B. W. (1993). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Boca Raton: CRC Press.
Guan, Y. and Haran, M. (2018). A computationally efficient projection-based approach for spatial generalized linear mixed models. Journal of Computational and Graphical Statistics,
27, 701-714.
Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics, 56, 1030-1039.
Hall, D. B., and Zhang, Z. (2004). Marginal models for zero-inflated clustered data. Statistical Modelling, 4(3), 161-180.
Harville, D. A. (1997). Matrix Algebra From a Statistician′s Perspective. New York: Springer.
He, H., Wang, W. J., Hu, J., Gallop, R., Crits-Christoph, P., and Xia, Y. L. (2015). Distribution-free inference of zero-inflated binomial data for longitudinal studies. Journal of Applied Statistics, 42, 2203-2219.
Katzfuss, M. (2017). A multi-resolution approximation for massive spatial datasets. Journal of the American Statistical Association, 112, 201-214.
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1-14.
Lee, C. E. and Kim, S. (2017). Applicability of zero-inflated models to fit the torrential rainfall count data with extra zeros in South Korea. Water, 9, 123.
Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Boca Raton: Chapman and Hall/CRC.
Moulton, L. H. and Halsey, N. A. (1995). A mixture model with detection limits for regression analyses of antibody response to vaccine. Biometrics, 51, 1570-1578.
Neelon, B., Zhu, L., and Neelon, S. E. B. (2015). Bayesian two-part spatial models for semicontinuous data with application to emergency department expenditures. Biostatistics, 16, 465-479.
Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and
Sain, S. (2015). A multiresolution Gaussian process model for the analysis of large spatial datasets. Journal of Computational and Graphical Statistics, 24, 579-599.
Park, J. and Haran, M. (2020). Reduced-dimensional Monte Carlo maximum likelihood for latent Gaussian random field models. Journal of Computational and Graphical Statistics, 30, 269-283.
Rathbun, S. L. and Fei, S. (2006). A spatial zero-inflated Poisson regression model for oak regeneration. Environmental and Ecological Statistics, 13, 409-426.
Shen, C. W. and Chen, C. S. (2024). Estimation and selection for spatial zero-inflated count models. Environmetrics, 35(4), e2847.
Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP) (2023). https://tccip.ncdr.nat.gov.tw/.
Tobin, J. (1958). Estimation of Relationships for Limited Dependent Variables. Econometrica, 26, 24-36.
Tzeng, S. L. and Huang, H. C. (2018). Resolution Adaptive Fixed Rank Kriging. Technometrics, 60, 198-208.
Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13, 1378-1402.
Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
Wikle, C. K. (2010). Low-Rank Representations for Spatial Processes. In Handbook of Spatial Statistics, eds. A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorp, Boca Raton, FL: CRC Press, 107-118. |