博碩士論文 111225025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.140.188.195
姓名 彭紫涵(Tzu-Han Peng)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(A Spatio-temporal Hierarchical PGEV Model for Extreme Value Analysis)
相關論文
★ A Compression-Based Partitioning Estimate Classifier★ Data adaptive median filters for image denoising based on a prediction criterion
★ Fixed effect estimation and spatial prediction via universal kriging★ Two-stage model selection under a misspecified spatial covariance function
★ 時空過程的配適研究★ 空間變異係數模型
★ 非監督式廣義學習NEM分類演算法★ Spline-based Approach for Image Restoration
★ 固定秩克里金法的圖像重建★ 高維資料空間零膨脹模型的有效參數估計
★ 克利金模型中基於Kullback-Leibler損失的共變異函數選擇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) PoT-GEV模型(Olafsdottir et al. 2021)是一種結合廣義極值(generalized extreme value; GEV)分佈和峰值超過閾值(peaks over threshold; PoT)方法的統計模型,近期已被廣泛應用於極端值分析。PoT-GEV模型用於擬合最大值序列資料,可進一步地評估極端值資料發生的強度和頻率之趨勢。當PoT-GEV模型用於分析氣候和環境的資料時,將空間和時間效應納入模型中是不可或缺的。因此,本論文提出一個新穎的時空階層PoT-GEV模型,此模型使用潛在高斯隨機過程描述PoT-GEV模型的參數用以捕捉資料的空間訊息,同時結合時間相關的協變量用以考慮時間效應。此外,我們採用拉普拉斯近似(Laplace approximation)來取代貝式方法中馬可夫鏈蒙地卡羅(MCMC)的參數估計方法,有效地提高計算效率。我們透過各式的模擬情境來展示時空階層PoT-GEV模型的有效性,同時分析台灣的降雨數據和PM2.5濃度來說明所提方法的實用性。
摘要(英) The PoT-GEV model by Olafsdottir et al. (2021) is a statistical model that combines the generalized extreme value (GEV) distribution with the peaks over threshold (PoT) approach, has been used in extreme value analysis. This model is used to fit block maximum data and can estimate trends in their intensity and frequency. Incorporating spatial and temporal effects into the PoT-GEV model is essential when analyzing climate and environmental data sets. In this research, we propose a novel spatio-temporal hierarchical PoT-GEV model. This model captures spatial information via a latent Gaussian process applied to the PoT-GEV parameters and incorporates time covariates for temporal effects. Furthermore, we employ the Laplace approximation method as an effective alternative to the Markov chain Monte Carlo (MCMC) parameter estimation techniques, aimed at enhancing computational efficiency. We demonstrate the efficacy of our proposed methodology through simulation studies covering various scenarios, with illustrations provided through the analysis of rainfall data and PM2.5 concentrations from Taiwan.
關鍵字(中) ★ 貝氏推論
★ 區塊最大序列數據
★ 廣義極值分佈
★ 潛在空間高斯過程
★ 拉普拉斯近似
關鍵字(英) ★ Bayesian inference
★ Block maximum series data
★ Generalized extreme value distribution
★ Latent spatial Gaussian process
★ Laplace approximation
論文目次 中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
1 Introduction 1
2 Models for Extreme Values 4
2.1 Generalized Extreme Value Model 4
2.2 Peaks Over Threshold Model 5
2.3 PoT-GEV Model 5
3 Spatio-temporal Hierarchical PGEV Model 9
4 Parameter Estimation 11
4.1 Thresholds 12
4.2 Hyperparameters 13
4.3 Random Effects 16
5 Simulation Study 19
5.1 Settings 19
5.2 Results 20
6 Application 27
6.1 Daily Precipitation Data 27
6.1.1 Description of the Precipitation Data 27
6.1.2 Results 29
6.2 Hourly PM2.5 Concentration Data 36
6.2.1 Description of the PM2.5 Concentration Data 36
6.2.2 Results 37
7 Conclusion and Discussion 45
References 47
參考文獻 Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Springer, New York.
Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics, Volume 11. Springer, New York.
Bopp, G. P. and Shaby, B. A. (2017). An exponential-gamma mixture model for extreme Santa Ana winds. Environmetrics, 28, e.2476.
Breslow, N. E. and Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 81-91.
Chen, M., Ramezan, R., and Lysy, M. (2022). Fast and scalable inference for spatial extreme value models. arXiv:2110.07051.
Coles, S., Bawa, J., Trenner, L., and Dorazio, P. (2001). An Introduction to Statistical Modeling of Extreme Values, Volume 208. Springer, New York.
Davison, A. C., Padoan, S. A., and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statistical Sciences, 27, 161-186.
Davison, A. C. and Huser, R. (2015). Statistics of extremes. Annual Review of Statistics and its Application, 2, 203-235.
Engelke, S. and Ivanovs, J. (2021). Sparse structures for multivariate extremes. Annual Review of Statistics and its Application, 8, 241-270.
Environmental Information Open Platform of the Taiwan Environmental Protection Administration (2023). Air Quality Index (AQI) (historical data). https://data.moenv.gov.tw/dataset/detail/AQX P 488.
Handcock, M. and Stein, M. L. (1993). A Bayesian analysis of kriging. Technometrics, 35, 403-410.
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016). TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software, 70, 1-21.
Lin, C. C. (2023). Impact of global warming on extreme rainfall in Taiwan. Unpublished master thesis, National Tsing Hua University, Hsinchu City, Taiwan.
Lindgren, F. K., Rue, H., and Lindstr¨om, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 423-498.
Ngarambe, J., Joen, S. J., Han, C. H., and Yun, G. Y. (2021). Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea. Journal of Hazardous Materials, 403, 123615.
Olafsdottir, H. K., Rootz´en, H., and Bolin, D. (2021). Extreme rainfall events in the northeastern united states become more frequent with rising temperatures, but their intensity distribution remains stable. Journal of Climate, 34, 8863-8877.
Savitzky, A. and Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36, 1627-1639.
Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC, Boca Raton.
Skaug, H. J. and Fournier, D. A. (2006). Automatic approximation of the marginal likelihood in non-gaussian hierarchical models. Computational Statistics & Data Analysis, 51, 699-709.
Taiwan Climate Change Projection and Information Platform (2023). Gridded observation data. https://tccip.ncdr.nat.gov.tw/ds 03 eng.aspx.
Tzeng, S. L., Chen, B. Y., and Huang, H. C. (2024). Assessing spatial stationarity and segmenting spatial processes into stationary components. Journal of Agricultural, Biological, and Environmental Statistics, 29, 301-319.
Venners, S. A., Wang, B., Peng, Z., Xu, Y., Wang, L., and Xu, X. (2003). Particulate matter, sulfur dioxide, and daily mortality in Chongquing, China. Environmental Health Perspectives, 111, 562-567.
Zoglat, A., El Adlouni, S., Badaoui, F., Amar, A., and Okou, C. G. (2014). Managing hydrological risks with extreme modeling: Application of Peaks over Threshold model to the Loukkos watershed, Morocco. Journal of Hydrologic Engineering, 19, 5014010.
指導教授 陳春樹(Chun-Shu Chen) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明