博碩士論文 111225021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.222.115.155
姓名 洪誠彣(Cheng-Wen Hong)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 時間相依一致性指標之估計-聯合模型補值法與無母數方法之比較
(Estimation of Time-dependent C-index: Comparison of Joint Model Imputation Method with Nonparametric Approach)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 在醫學分析研究的存活資料中,存活時間常包含長期追蹤共變數,而此類型資料通常會伴隨著測量誤差,且當事件發生時,可能導致病患從長期研究中有信息性的退出試驗。針對此種數據,現存的無母數方法僅考慮到時間獨立右設限資料,且不允許有測量誤差存在,而時間相依共變數資料則會因為患者退出試驗,使得估計出現偏誤,為了克服這兩點困難,我們採用聯合模型補值法,並導入時間相依共變數,可以得到有效且一致性的估計。這裡分為兩類方法進行比較,其中之一為補值法,其中包含鄰近點補值法及聯合模型補值法,而我們在聯合模型中進一步探討三種模型,包括Cox模型、AFT模型及PO模型;另一個為無母數方法,包含了逆設限機率加權法。再來我們想了解利用以上三種方法所得到共變數的預測準確性。因此,使用時間相依一致性指標來作為衡量預測模型的標準。本研究目的在於比較以上方法所估計的時間相依一致性指標,在各種不同樣本數、設限率、測量誤差及錯誤模型配適下的影響,最後以實際愛滋病的資料做分析,展示不同方法下的結果。
摘要(英) In the analysis of survival data in medical research, the survival time often includes long-term follow-up covariates, and such data typically come with measurement errors. When an event occurs, it may lead to informative drop-out of patients from the long-term study. Existing nonparametric methods only consider time-independent right-censored data and do not account for measurement errors, while time-dependent covariate data can result in biased estimates due to patient drop-out. To overcome these challenges, we employ joint modeling imputation methods and incorporate time-dependent covariates to achieve efficient and consistent estimates. We compare two categories of methods: the first category is imputation methods, which include the Nearest Neighbor Imputation and Joint Modeling Imputation, and within the joint model, we further explore three models: the Cox model, the Accelerated Failure Time (AFT) model, and the Proportional Odds (PO) model. The second category is nonparametric methods, which include the Inverse Probability of Censoring Weighted (IPCW) method. We aim to evaluate the prediction accuracy of the covariates obtained by these three methods. Therefore, we use the Time-dependent Concordance Index as a standard to measure the predictive performance of the models. This study aims to compare the estimated Time-dependent Concordance Index across various sample sizes, censoring rates, measurement errors, and model misspecifications. Finally, we apply these methods to real AIDS data to illustrate the results under different approaches.
關鍵字(中) ★ 聯合模型
★ 時間相依一致性指標
★ Cox模型
★ AFT模型
★ PO模型
★ 鄰近點估計法
★ 逆設限機率加權法
關鍵字(英) ★ Joint model
★ time-dependent concordance index
★ Cox model
★ AFT model
★ PO model
★ Nearest Neighbor Estimate
★ IPCW approach
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
1.序論 1
1.1 半母數模型 3
1.1.1 Cox迴歸模型 3
1.1.2 AFT迴歸模型 4
1.1.3 PO迴歸模型 5
1.2 ROC、AUC及一致性指標 8
1.3 ROC曲線推廣 10
1.3.1 時間獨立共變數 11
1.3.2 時間相依共變數 14
1.4 補值法 17
1.4.1 鄰近點補值法 17
1.4.2 聯合模型補值法 18
1.5 無母數方法 18
1.5.1 逆設限機率加權法 18
1.6 文獻回顧 20
2.統計方法 22
2.1 聯合模型補值法 23
2.1.1 半母數模型風險函數 24
2.1.2 聯合模型蓋四函數與估計 26
2.1.3 程式套件 31
2.1.4 半母數模型時間相依一致性指標推導 32
3.模擬研究 36
3.1 Cox模型模擬 37
3.1.1 不同樣本數 38
3.1.2 不同設限率 42
3.1.3 不同測量誤差 44
3.1.4 模型錯誤配適 48
3.2 AFT模型模擬 49
3.2.1 不同樣本數 50
3.2.2 不同設限率 54
3.2.3 不同測量誤差 56
3.2.4 模型錯誤配適 60
3.3 PO模型模擬 61
3.3.1 不同樣本數 62
3.3.2 不同設限率 66
3.3.3 不同測量誤差 68
3.3.4 模型錯誤配適 71
4.資料分析 72
4.1 愛滋病資料 72
4.2 時間相依一致性指標 73
5.結論 79
參考文獻 80
附錄 83
A.1 時間獨立共變數在I/D下AUC與concordance推導 83
A.2 時間相依共變數在I/D下AUC與concordance推導 86
A.3 半母數Cox模型推導 88
A.4 參數Weibull AFT模型推導 89
A.5 半母數PO模型推導 90
參考文獻 1. Blanche, P., Dartigues, J. F. and Jacqmin-Gadda, H. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in Medicine, 32(30), 5381–5397.
2. Blanche, P., Kattan, M. W. and Gerds, T. A. (2019). The c-index is not proper for the
evaluation of t-year predicted risks. Biostatistics, 20(2), 347–357.
3. Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical
Society. Series B (Methodological), 34(2), 187–220.
4. Cox, D. R. (1972). Partial likelihood. Biometrics, 62, 269-276.
5. Dietz, K., Gail, M., Krickeberg, K., Samet, J., Tsiatis, A. and Lange, Kenneth. (2002). Statistics for Biology and Health.
6. Gerds, T. A., Kattan, M. W., Schumacher, M. and Yu, C. (2013). Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine, 32(13), 2173–2184.
7. Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics, 61(1), 92–105.
8. Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measure-ments and event time data. Biostatistics , 1(4), 465–480.
9. Hickey, G. L., Philipson, P., Jorgensen, A. and Kolamunnage-Dona, R. (2016). Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. BMC Medical Research Methodology, 16(1), 117.
10. Houwelingen, H. and Putter, H. (2012). Dynamic Prediction in Clinical Survival Analysis.
11. Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics, 62(4), 1037–1043.
12. Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17(1), 53.
13. Pantoja-Galicia, N., Okereke, O. I., Blacker, D. and Betensky, R. A. (2021). Concordance Measures and Time-Dependent ROC Methods. Biostatistics and Epidemiology, 5(2),232–249.
14. Rizopoulos, D. (2010) JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software, 35(9), 1–33.
15. Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical Software ,72(7), 1–45.
16. Robins, J. M. and Finkelstein, D. M. (2000). Correcting for noncompliance and dependent censoring in an AIDS Clinical Trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics, 56(3), 779–788.
17. Tseng, Y. K., Hsieh, F. and Wang, J. L. (2005). Joint Modelling of Accelerated Failure Time and Longitudinal Data. Biometrika, 92, 587–603.
18. Tseng, Y. K., SU, Y. R., MAO, M. and Wang, J. L. (2015) An extended hazard model with longitudinal covariates. Biometrika, 102, 135–150.
19. Tsiatis, A. A. and Davidian, M.(2001) A Semiparametric Estimator for the Proportional Hazards Model with Longitudinal Covariates Measured with Error. Biometrika, 88,447–458.
20. van Geloven, N. , He, Y. , Zwinderman, A.H. and Putter, H. (2021). Estimation of incident dynamic AUC in practice, Computational Statistics and Data Analysis , vol. 154.
21. Williamson, P. R., Kolamunnage-Dona, R., Philipson, P. and Marson, A. G. (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine, 27(30),6426–6438.
22. Wulfsohn, M. S.and Tsiatis, A. A.(1997) A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.
23. Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020) Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM. Journal of Statistical Software,93, 1-29.
24. Zeng, D. and Lin, D. Y. (2007). Efficient Estimation for the Accelerated Failure Time Model. Journal of the American Statistical Association, 102(480), 1387–1396.82.
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明