參考文獻 |
[1] Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive
moving average models. Biometrika, 60(2), 255-265.
[2] Busoniu, L., Babuska, R., and De Schutter, B. (2010). Multi-agent reinforcement
learning: An overview. Innovations in Multi-Agent Systems and Applications-1, 183-
221.
[3] Chakole, J. B., Kolhe, M. S., Mahapurush, G. D., Yadav, A., and Kurhekar, M. P.
(2021). A Q-learning agent for automated trading in equity stock markets. Expert
Systems with Applications, 163, 113761.
[4] Cherno↵, H., Lo, S. H., and Zheng, T. (2009). Discovering influential variables: a
method of partitions. Annals of Applied Statistics, 3,1335-1369.
[5] Cui, T., Ding, S., Jin, H., and Zhang, Y. (2023). Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach. Economic
Modelling, 119, 106078.
[6] Cui, T., Du, N., Yang, X., and Ding, S. (2024). Multi-period portfolio optimization
using a deep reinforcement learning hyper-heuristic approach. Technological Forecasting and Social Change, 198, 122944.
[7] Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4(Nov), 1039-1069.
[8] Huang, S. F., Chiang, H. H., and Lin, Y. J. (2021). A network autoregressive model
with GARCH e↵ects and its applications. PLOS ONE, 16, e0255422.
[9] Huang, S. F. and Lin, T. Y. (2018). A linearization of portfolio optimization problem
with general risk measures under multivariate conditional heteroskedastic models.
Asia-Pacific Journal of Financial Studies, 47, 449-469.
[10] Khan, N., Zafar, M., Okunlola, A. F., Zoltan, Z., and Robert, M. (2022). Effects of financial inclusion on economic growth, poverty, sustainability, and financial efficiency: Evidence from the G20 countries. Sustainability, 14(19), 12688.
[11] Lo, S. H. and Yin, Y. (2021). A novel interaction-based methodology towards explainable AI with better understanding of Pneumonia Chest X-ray Images. Discover
Artificial Intelligence, 1(1), 16.
[12] Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77-91.
[13] Markowitz, H. M. (1959). Portfolio Selection. John Wiley and Sons, New York.
[14] Neuneier, R. (1997). Enhancing Q-learning for optimal asset allocation. Advances in
Neural Information Processing Systems, 10.
[15] Sahu, S. K., Mokhade, A., and Bokde, N. D. (2023). An overview of machine learning,
deep learning, and reinforcement learning-based techniques in quantitative finance:
recent progress and challenges. Applied Sciences, 13(3), 1956.
[16] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT Press.
[17] Syu, J. H., Yeh, Y. R., Wu, M. E., and Ho, J. M. (2021). Self-management portfolio
system with adaptive association mining: a practical application on Taiwan stock
market. Mathematics, 9, 1093.
[18] Tsay, R. S. (2010). Analysis of Financial Time Series. John Wiley and Sons.
[19] Wang, H., Lo, S. H., Zheng, T., and Hu, I. (2012). Interaction-based feature selection
and classification for high-dimensional biological data. Bioinformatics, 28(21), 2834-
2842.
[20] Watkins, C. J. (1989). Learning from Delayed Rewards. Ph.D. dissertation, University
of Cambridge, Cambridge, England.
[21] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8, 279-292. |