博碩士論文 111225024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.119.108.98
姓名 劉怡禎(Yi-Jhen Liu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 臺灣地區分簇主震及其最大餘震之統計分析
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 強烈的地震經常給人類帶來重大的損失與災難,而在之後出現的大餘震可能進一步弱化已經受損的建築結構。為降低主震後的救災風險,即時評估餘震,特別是最大餘震的風險是一項至關重要的研究。本文的資料來源為臺灣中央氣象署的地震與地球物理資料管理系統之完整地震目錄(https://gdms.cwa.gov.tw/catalogDownload.php)。研究中的地震為發生在臺灣地區(東經118°至126°,北緯20°至26°)於1994年至2023年間,規模在3.0以上、震源深度在70公里以內的所有淺層地震。首先利用經驗公式進行分簇研究,選出規模超過5.0的主震,然後找出對應的最大規模餘震。本文探索主震規模的分配,以及主震間隔時間的分配。此外根據關聯結構建立最大餘震與其主震的規模差距、時間差距和距離差距的聯合分布。最後建立未來主震可能的規模及時間,以及當主震發生後,對應最大規模餘震的可能規模、時間及震央之預測方法,並且加以統計評估之。
摘要(英) Strong earthquakes usually bring up significant losses and disasters to humanbeing, and large aftershocks occurred shortly after the major earthquake may further weaken the damaged structures. To carry out a rescue safely, it is crucial to assess the real-time risk of large aftershocks. In this study, we obtain the earthquake catalog from the Taiwan Seismological and Geophysical Data Management System (GDMS,https://gdms.cwa.gov.tw/
oindent
catalogDownload.php). Of particular interest are earthquakes with magnitude of 3.0 or higher and hypocentral depth within 70 kilometers that occurred between 1994 and 2023 in the Taiwan region (from 118°E to 126°E, 20°N to 26°N). An empiried rule-based declustering method is applied to find main shocks with magnitude 5.0 or greater, and hence the associated largest aftershocks. The distribution of the magnitude of mainshocks, and that of the inter-occurrence time between successive main shocks are investigated. Moreover, the copula-based joint distribution of the differences in magnitude, time, and distance between the mainshock and the associated largest aftershock is studied. Finally, we conducted and evaluated different methods for forecasting the possible magnitude and time of the next mainshock, as well as after the current main shock, the possible magnitude, time, and epicenter of the largest aftershock.
關鍵字(中) ★ 指數分配
★ 伽瑪分配
★ 韋伯分配
★ 聯合機率密度函數
★ 相關性分析
★ 關聯結構
關鍵字(英) ★ Exponential distribution
★ Gamma distribution
★ Weibull distribution
★ Joint probability density function
★ Correlation analysis
★ Copula
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 研究動機與目的 1
第二章 文獻回顧 3
2.1 常用右偏機率分配 3
2.2 地震規模頻率 5
2.3 統計檢定方法 8
2.4 地震分簇及相關分析 12
2.5 關聯結構函數 15
2.6 盒鬚圖 17
第三章 主震之統計分析 18
3.1 地震分簇方法 18
3.2 主震規模及間隔時間之分析 22
3.2.1 主震規模分配 22
3.2.2 主震間隔時間分析 25
3.3 主震規模及間隔時間之預測 27
第四章 最大餘震之統計分析 30
4.1 最大餘震規模、時間及震央之研究 30
4.2 震源機制與地區之影響 37
4.3 最大餘震規模、時間及震央之預測 41
第五章 結論 43
參考文獻 44
附錄 1994-2023分簇主震與其最大餘震表 48
參考文獻 Aki K. (1965), Maximum likelihood estimate of b in the formula log10N=a-bM and its confidence limits., Bulletin of Earthquake Research, 43, 237-239.
Alvarez-G ́omez J.A.(2019), FMC—Earthquake focal mechanisms data management, cluster and classification., Software X, 9, 299-307.
Cramr, H.(1928), On the composition of elementary errors, Scandinavian Actuarial Journal, 1,13-74.
Chen, K.C., and J.H. Wang (2012), Correlations between the mainshock and the largest aftershock for Taiwan earthquakes, Pure and Applied Geophysics, 169, 1217-1229.
Chen, C.H., J.P. Wang, Y.M. Wu, and C.H Chan (2012), A study of earthquake inter-occorrence times distribution models in Taiwan, Natural Hazards, 69, 1335-1350.
C.H Chan, and Y.M. Wu (2013), Maximum magnitudes in aftershock sequences in Taiwan, Journal of Asian Earth Sciences, 73, 409-418.
Dickey, D.A., and W.A. Fuller (1979), Distribution of the estimators for autoregresive time series with a unit root, Journal of the American Statistical Association,
74,427-431.
Elst, N.J., and B.E. Shaw (2015), Largest aftershock happen farther away: Nonseparability of magnitude and spatial distributions of aftershocks, Geophysical Research
Letters, 42, 5771-5778.
Gutenberg, R., and C.F. Richter (1944), Frequency of earthquakes in California.Bulletin of the Seismological Society of America, 34, 185-188.
Gardner, J., and L. Knopoff (1974), Is the sequence of earthquakes in Southern California, with aftershock removed, poissonian? Bulletin of the Seismological Society of America, 64, 1363-1367.
Hogg, R.V., J.W. McKean and A.T. Craig (2021), Introduction to Mathematical Statistics, Pearson FT Press.
Huang, S., Q. Li, Z. Shu, and P.W. Chen (2023), Copula-based joint distribution analysis of wind speed and wind direction: Wind energy development for Hong Kong, Wind Energy, 26, 900-922.
Kolmogorov, A. (1933), Sulla determinazione empirica di una legge di distribuzione, Giornale dell’Istituto Italiano degli Attuari, 4, 83-91.
Kendall, M. G. (1938), A new measure of rank correlation, Biometrika, 30, 81-93.
Kruskal, W., and W.A. Wallis (1952), Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621.
Mann, H.B., and D.R. Whitney (1947), On a test of whether one of two random variables is stochastically larger than the other, The Annals of Mathematical Statistics, 18, 50-60.
Molchan, G.M. and O.E. Dmitrieva (1992), Aftershock identification: methods and new approaches, Geophysical Journal International, 109, 501-516.
Ogata, Y. (1988), Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, Journal of the American Statistical Association, 83, 9-27.
Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Annals of the Institute of Statistical Mathematics, 50, 379-402.
Panamtash, H., Q. Zhou, Z. Qu, and K.O. Davis (2021), A copula-based Bayesian method for probabilistic solar power forecasting, Solar Energy, 196, 336-345.
Smirnov, N. (1948), Table for estimating the goodness of fit of empirical distributions,The Annals of Mathematical Statistics, 19, 279-281.
Simard, C., and B. Rmillard (2015), Forecasting time series with multivariate copulas,Dependence Modeling, 3, 59-82.
Tukey, J.H. (1977), Exploratory Data Analysis, Addison-Wesley. Tsapanos, T.M., G.F. Karakaisis, P.M. Hatzidimitriou, and E.M. Scordilis (1988), On the probability of the time of occurrence of the largest aftershock and of the largest foreshock in a seismic sequence, Tectonophysics, 149, 177-180.
Tahir, M., J.R. Grasso., and D. Amorse (2012), The largest aftershock: How strong, how far away, how delayed?, Geophysical Research Letters, 39, L04301.
Utsu, T. (1969), Aftershock and earthquake statistic (I): some parameters which characterize an aftershock sequence and their interrelations, Journal of the Faculty of Science, VII, 129-195.
Van der Elst, N.J., and B.E. Shaw (2015), Larger aftershocks happen farther away: Nonseparabilityof magnitude and spatial distributionsof aftershocks, Geophysical Research LettersVolume , 42, 5679-6127.
Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan, Bulletin of the Seismological Society of America, 90, 859-869.
Wu, Y.M., and C.C. Chen (2006), Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake, Tectonophysics, 429, 125-132.
Zhuang, J., Y. Ogata, and D. Vere-Jones (2002), Stochastic declustering of space-time earthquake occurrences, Journal of the American Statistical Association, 97, 369-380.
Zhuang, J., C.P Chang, Y. Ogata, and Y.I. Chen (2005), A study on the background and clustering seismicity in the Taiwan region by using point process models, Journal of Geophysical Research, 110, B05S18.
中央氣象署:地震測報中心30周年專刊(2019), 第四章:結語, https://scweb.cwa.gov.tw/zh-tw/page/intro/83.
謝侑霖 (2020). 2019年美國加州規模7.1理奇克萊斯特地震之餘震風險統計,國立中央大學碩士論文。
李天旭 (2023). 台灣地區主震及其最大規模餘震之研究,國立中央大學碩士論文。
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明