博碩士論文 111225006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.223.172.122
姓名 盧弘晉(Hung-Chin Lu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 基於Copula 下的馬可夫鏈模型對於廣義卜瓦松分布之改變點偵測
(Change-point Estimation Based on the Copula-based Markov Chain Model for Generalized Poisson Time Series)
相關論文
★ Credit Risk Illustrated under Coupled diffusions★ The analysis of log returns using copula-based Markov models
★ Systemic risk with relative behavior★ 在厚尾分配下的均值收斂交易策略
★ Comparison of Credit Risk in Coupled Diffusion Model and Merton′s Model★ Estimation in copula-based Markov mixture normal model
★ 金融系統性風險的回顧分析★ New insights on ′′A semi-parametric model for wearable sensor-based physical activity monitoring data with informative device wear"
★ A parametric model for wearable sensor-based physical activity monitoring data with informative device wear★ Optimal Asset Allocation using Black-Litterman with Smooth Transition Model
★ VIX Index Analysis using Copula-Based Markov Chain Models★ 使用雙重指數平滑預測模型及無母數容忍限的配對交易策略
★ Intraday Pairs Trading on Taiwan Semiconductor Companies through Mean Reverting Processes★ Target index tracing through portfolio optimization
★ Estimation in Copula-Based Markov Models under Weibull Distributions★ Optimal Strategies for Index Tracking with Risky Constrains
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 檢測隨時間序列數據中的轉變,稱之為改變點估計。在此篇論文當中,我們採
用廣義卜瓦松分佈(GPD)來處理計數序列數據。廣義卜瓦松分佈經常性地作為
卜瓦松分佈的改進,使其在衡量位置和離散度方面更具有靈活度。加上,我們提出
了基於copula的馬可夫鏈模型來解決數據中的非線性依賴關係。接下來利用最大似
然估計和牛頓-拉夫遜法,實現了參數和改變點估計。為了說明其有效性,我們將
該方法應用於COVID-19及礦坑事故相關數據,並隨後提供相應的實證結果進行說
明。
摘要(英) Change-point estimation is to detect shifts in sequential data over time elapsed. We
employ the Generalized Poisson Distribution (GPD) to deal with the counting sequential
data. Occasionally, the GPD serves as a more flexible alternative to the Poisson distribution
with respect to measuring the location and dispersion. We propose a copula-based Markov
chain model to tackle the nonlinear dependence in the data. Afterwards, the parameters and
change-point estimation are achieved using profile maximum likelihood estimation, along
with the application of the Newton-Raphson method. In order to illustrate its effectiveness,
we apply the method to the data which concerned the COVID-19 pandemic and coal mining
accidents. We subsequently provide the corresponding empirical result for illustration.
關鍵字(中) ★ 改變點
★ 廣義卜瓦松分佈
★ copula
關鍵字(英) ★ Change point
★ Generalized Poisson Distribution (GPD)
★ Copula
論文目次 1 Introduction 1
2 The Proposal Model & Algorithm 3
2.1 Generalized Poisson Distribution (GPD) . . . . . . . . . . . . . . . . . . . . . 3
2.2 Copula Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Change-point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Asymptotic Normal Approximation Interval . . . . . . . . . . . . . . . . . . . 9
3 Simulations 12
3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Generalized Poisson Distribution vs. Poisson Distribution . . . . . . . . . . . . 13
4 Empirical Study 19
5 Conclusion 23
References 24
Appendix A 26
Appendix B 28
Appendix C 55
參考文獻 [1] Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41, 100–115.
[2] Nagaraj, N.K. (1990). Two-sided tests for change in level for correlated data. Statistical
Papers, 31, 181-194.
[3] Pignatiello Jr, J. J. and Samuel, T. R. (2001). Identifying the time of a step-change in the
process fraction nonconforming. Quality Engineering, 13, 357–365.
[4] Perry, M. B. and Pignatiello Jr, J. J. (2005). Estimation of the change point of the process
fraction nonconforming in SPC applications. International Journal of Reliability, Quality
and Safety Engineering, 12, 95-110.
[5] Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC press,
Florida.
[6] Darsow, W. F., Nguyen, B., and Olsen, E. T. (1992). Copulas and Markov processes. Illinois
journal of mathematics, 36, 600-642.
[7] Long, T. H. and Emura, T. (2014). A control chart using copula-based Markov chain models.
Journal of the Chinese Statistical Association, 52, 466-496.
[8] Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Annales de
l’ISUP, 8, 229-231.
[9] Chen, X., Wu, W. B., and Yi, Y. (2009). Efficient estimation of copula-based semiparametric
Markov models. The Annals of Statistics, 37, 4214-4253.
[10] Carlin, B. P., Gelfand, A. E., and Smith, A. F. (1992). Hierarchical Bayesian analysis of
changepoint problems. Journal of the royal statistical society: series C (applied statistics),
41, 389-405.
[11] Emura, T., Lai, C. C., and Sun, L. H. (2023). Change point estimation under a copula-based
Markov chain model for binomial time series. Econometrics and Statistics, 28, 120-137.
[12] Liu, L. H. (2021). Change point estimation based on copula-based Markov chain model for
normal time series (Master’s thesis), Department of Statistics, National Central University.
[13] Jian, W. X. (2023). Change point Estimation Based on the Copula-based Markov Chain
Model for Mixture Normal Time Series (Master’s thesis), Department of Statistics, National
Central University.
[14] Nelsen, R.B. (2006). An Introduction to Copulas (2nd ed.). Springer Series in Statistics,
Berlin.
[15] Joe, H. and Zhu, R. (2005). Generalized Poisson distribution: the property of mixture of
Poisson and comparison with negative binomial distribution. Biometrical Journal: Journal
of Mathematical Methods in Biosciences, 47, 219-229.
[16] Clayton, D. G. (1978). A model for association in bivariate life tables and its application
in epidemiological studies of familial tendency in chronic disease incidence. Biometrika,
65, 141-151.
[17] Knight, K. (2000). Mathematical Statistics. Chapman and Hall, New York.
[18] Maguire, B. A., Pearson, E. S., and Wynn, A. H. A. (1952). The time intervals between
industrial accidents. Biometrika, 39, 168-180.
[19] Jarrett, R. G. (1979). A note on the intervals between coal-mining disasters. Biometrika,
66, 191-193.
[20] Worsley, K. J. (1986). Confidence regions and tests for a change-point in a sequence of
exponential family random variables. Biometrika, 73, 91-104.
[21] Cobb, L. (1978). Stochastic catastrophe models and multimodal distributions. Behavioral
Science, 23, 360-374.
[22] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82, 711-732.
[23] Lee, S., Park, S., and Chen, C. W. S. (2017) On Fisher’s dispersion test for integer-valued
autoregressive Poisson models with applications. Communications in Statistics - Theory
and Methods, 46, 9985-9994.
[24] Hall, C. A., Snelling, W. O., and Holmes, J. A. (1907). Coal-mine accidents, their causes
and prevention (a preliminary statistical report) , 333, Govt. Print. Off.
指導教授 孫立憲(Li-Hsien Sun) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明