博碩士論文 111225016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.191.157.233
姓名 林易進(Yi-Jin Lin)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 基於動態網絡和vine copula的投資組合優化
(Portfolio Optimization Based on Dynamic Networks and Vine Copulas)
相關論文
★ Q學習結合監督式學習在股票市場的應用★ 基於Q-learning與非監督式學習之交易策略
★ 視覺化股票市場之狀態變動★ SNF效應的理論解釋和高影響力聚類特徵的識別
★ 利用強化學習探索可再生能源交易市場中的參與者策略★ 基於I-score和Q-learning的投資組合
★ 軟訊息下的滯後多元貝氏結構GARCH模型及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 這篇研究在探討將藤耦合(vine copula)與網絡方法結合應用於投資組合優化。我們首先使用de-GARCH技術消除每個財務時間序列中的自相關、條件異方差性和波動聚集等內在特徵。接著,我們計算多變量de-GARCH序列的相似矩陣,以構建整體的最小生成樹(MST),這有助於識別適合投資組合的股票。隨後,我們為選定的股票構建局部最小生成樹(LMST),並基於 LMST 使用各種藤耦合模型來描述選定股票的聯合分佈。然後,使用這種基於聯結網路的分佈來設定投資組合中所選股票的權重。我們採用 2019 年至 2023 年 S&P100 指數的成分股,透過移動視窗的架構進行實證研究。數值結果表明,與競爭對手相比,所提出的方法獲得令人滿意的累積報酬。
摘要(英) This study explores the application of vine copulas combined with network methods for portfolio optimization. We begin by eliminating inherent features such as autocorrelation, conditional heteroscedasticity, and volatility clustering in each financial time series using the de-GARCH technique. We then calculate the similarity matrix of the multivariate de-GARCH series to construct the global Minimum Spanning Tree (MST), which helps identify suitable stocks for the portfolio. Subsequently, we build the local MST (LMST) for the selected stocks and employ various vine copulas based on the LMST to model the joint distribution of the selected stocks. This copula network-based distribution is then used for setting the weights of the selected stocks in the portfolio. Our empirical investigation involves the component stocks of the S&P100 index from 2019 to 2023, using a rolling-window framework. The numerical results demonstrate that the proposed method yields satisfactory cumulative returns compared to competitors.
關鍵字(中) ★ 金融網絡
★ 最小生成樹
★ 網絡中心性
★ 投資組合優化
★ 藤耦合
關鍵字(英) ★ financial network
★ Minimum Spanning Tree
★ network centrality
★ portfolio optimization
★ vine copula
論文目次 摘要 ...................................................................................................... i
Abstract ............................................................................................... ii
1 Introduction ................................................................................... 1
2 Literature Review .......................................................................... 3
2.1 Network Construction and Centrality ..................................................................... 3
2.2 Portfolio Construction ............................................................................................. 7
2.2.1 Stock Selection ........................................................................................... 7
2.2.2 Weights Allocation ..................................................................................... 9
2.3 DeGARCH Method ................................................................................................. 11
2.4 Vine Copula ............................................................................................................ 12
3 Methodology ............................................................................... 16
4 Simulation ................................................................................... 20
4.1 Settings .................................................................................................................. 20
4.2 Results .................................................................................................................... 21
5 Empirical Analysis ........................................................................ 26
5.1 Data Description .................................................................................................... 26
5.2 Data Preprocessing ................................................................................................ 27
5.3 Portfolio Performance ........................................................................................... 28
6 Conclusion and Discussion ........................................................... 33
Reference .......................................................................................... 35
Appendix A ........................................................................................ 38
Appendix B ........................................................................................ 41
Appendix C ......................................................................................... 44
參考文獻 [1] Ahmadi, H. and Sitdhirasdr, D. (2016). Portfolio optimization is one multiplication, the
rest is arithmetic. Journal of Applied Finance and Banking, 6(1), 81.
[2] Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., and Petri, G.
(2020). Networks beyond pairwise interactions: Structure and dynamics. Physics
Reports, 874, 1-92.
[3] Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for
conditionally dependent random variables modeled by vines. Annals of Mathematics
and Artificial Intelligence, 32, 245–268.
[4] Bedford, T. and Cooke, R. M. (2002). Vines – A new graphical model for dependent
random variables. Annals of Statistics, 30, 1031–1068.
[5] Boginski, V., Butenko, S., and Pardalos, P. M. (2006). Mining market data: A network
approach. Computers & Operations Research, 33, 3171-3184.
[6] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31, 307–327.
[7] Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique
identification. Journal of Mathematical Sociology, 2, 113-120.
[8] Borgatti, S. P. (2006). Identifying sets of key players in a social network. Computational
and Mathematical Organization Theory, 12, 21-34.
[9] Borgatti, S. P., Agneessens, F., Johnson, J. C., and Everett, M. G. (2024). Analyzing social
networks. Sage Publications Ltd.
[10] Bouri, E., Saeed, T., Vo, X. V., and Roubaud, D. (2021). Quantile connectedness in the
cryptocurrency market. Journal of International Financial Markets, Institutions and
Money, 71, 101302.
[11] Clemente, G. P., Grassi, R., and Hitaj, A. (2021). Asset allocation: New evidence through
network approaches. Annals of Operations Research, 299, 61-80.
[12] Cornaro, A. (2023). Financial resilience of insurance network during Covid-19
pandemic. Quality & Quantity, 57, 151-172.
[13] Czado, C. and Nagler, T. (2022). Vine copula based modeling. Annual Review of
Statistics and Its Application, 9, 453-477.
[14] de Raadt, A., Warrens, M. J., Bosker, R. J., and Kiers, H. A. (2021). A comparison of
reliability coefficients for ordinal rating scales. Journal of Classification, 1-25.
[15] Desmoulins-Lebeault, F., and Kharoubi-Rakotomalala, C. (2012). Non-Gaussian
diversification: When size matters. Journal of Banking and Finance, 36, 1987-1996.
[16] Embrechts, P. (1999). Correlation: Pitfalls and alternatives. Risk Magazine, 69–71.
[17] Esmalifalak, H. (2022). Euclidean (dis) similarity in financial network analysis. Global
Finance Journal, 53, 100616.
35
[18] Evkaya, O., Gür, İ., Yıldırım Külekci, B., and Poyraz, G. (2024). Vine copula approach to
understand the financial dependence of the Istanbul stock exchange index.
Computational Economics, 1-46.
[19] Huang, S. F. and Guo, M. (2014). Model risk of the implied GARCH-normal model.
Quantitative Finance, 14, 2215–2224.
[20] Huang, S. F. and Lin, T. Y. (2018). A linearization of portfolio optimization problem with
general risk measures under multivariate conditional heteroskedastic models. Asia
Pacific Journal of Financial Studies, 47, 449–469.
[21] Joe, H. (1996). Families of m-variate distributions with given margins and m (m-1)/2
bivariate dependence parameters. Lecture Notes-monograph Series, 120-141.
[22] Junker, M., Szimayer, A., and Wagner, N. (2005). Nonlinear term structure dependence:
Copula functions, empirics, and risk implications. Journal of Banking and Finance, 30,
1171–1199.
[23] Kurowicka, D. and Cooke, R. M. (2006). Completion problem with partial correlation
vines. Linear Algebra and Its Applications, 418, 188-200.
[24] Lin, L.-Y. (2023). Portfolio Construction Based on Dynamic Networks, Centrality and
Weights, Master’s thesis, Department of Applied Mathematics National Sun Yat-sen
University.
[25] Mantegna, R. N. (1999). Hierarchical structure in financial markets. European Physical
Journal B-Condensed Matter and Complex Systems, 11, 193-197.
[26] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77-91.
[27] Mehatari, R., Kannan, M. R., and Samanta, A. (2022). On the adjacency matrix of a
complex unit gain graph. Linear and Multilinear Algebra, 70, 1798-1813.
[28] Nelsen, R. B. (2006). An Introduction to Copulas. Springer.
[29] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica: Journal of the Econometric Society, 59, 347–370.
[30] Ning, C. (2010). Dependence structure between the equity market and the foreign
exchange market a copula approach. Journal of International Money and Finance, 29,
743–759.
[31] Patton, A. (2013). Copula methods for forecasting multivariate time series. Handbook
of Economic Forecasting, 2, 899–960.
[32] Peralta, G. and Zareei, A. (2016). A network approach to portfolio selection. Journal of
Empirical Finance, 38, 157-180.
[33] Pozzi, F., Di Matteo, T., and Aste, T. (2013). Spread of risk across financial markets:
Better to invest in the peripheries. Scientific Reports, 3, 1665.
[34] Sahamkhadam, M. and Stephan, A. (2023). Portfolio optimization based on forecasting
models using vine copulas: An empirical assessment for global financial crises. Journal
of Forecasting, 42, 2139-2166.
36
[35] Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Annales de
l′ISUP, 229-231.
[36] Tsay, R. S. (2005). Analysis of Financial Time Series. New Jersey: John Wiley and Sons.
[37] Vuolo, M. (2015). Copula models for sociology: Measures of dependence and
probabilities for joint distributions. Sociological Methods and Research, 46, 604–648.
[38] Vuong, C. D. (2022). Dynamic Portfolio Selection Strategy, Master’s thesis, Department
of Applied Mathematics National Sun Yat-sen University.
指導教授 黃士峰(Shih-Feng Huang) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明