以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:3.149.231.40
姓名 李懿軒(Yi-Hsuan Li) 查詢紙本館藏 畢業系所 通訊工程學系 論文名稱 適用於巨量多輸入多輸出通訊環境基於卡爾曼濾 波器之資料輔助通道估計技術研究
(Data-Aided Channel Estimation Based on Kalman Filter in Massive MIMO Communications)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在巨量多輸入多輸出(massive multiple-input multiple-output, M-MIMO)蜂巢式網路中,由於時頻資源分配有限且通道同調時間受限,因此可用的正交領航序列(pilot sequence,PC)數量也是有限的。這導致在相鄰細胞中重複使用PC,當其他細胞的用戶傳輸PC時,會對目標細胞基站的通道估計造成干擾,這種干擾被稱為領航序列污染(pilot contamination, PC)。頻率和PC的重複使用將導致通道估計性能下降,因此PC被認為是多細胞M-MIMO系統的性能限制因素。本論文旨在研究在PC環境下,引入一種更適用於實際環境的卡爾曼濾波器(Kalman filter, KF)並結合資料輔助(data-aided)通道估計方法來抵抗PC的策略,經由模擬結果可得本文所提出的方法能夠有效降低在在PC環境下通道估計的均方誤差(mean square error,MSE)。 摘要(英) In massive multiple-input multiple-output (M-MIMO) cellular networks, the availability of orthogonal pilot sequences (PS) is limited due to constraints in time-frequency resource allocation and channel coherence time. This leads to the reuse of PS among adjacent cells, causing interference in channel estimation at the target base station when PS transmissions from users in other cells occur, known as pilot contamination (PC). The reuse of frequency and PS results in degraded channel estimation performance, making PC a critical limiting factor in multi-cell M-MIMO systems. This paper aims to investigate a strategy to mitigate PC by introducing a Kalman Filter (KF) tailored for practical environments and integrating it with data-aided channel estimation methods. Simulation results demonstrate that the proposed approach effectively reduces the Mean Square Error (MSE) of channel estimation in PC environments. 關鍵字(中) ★ 通道估計
★ 卡爾曼濾波器
★ 資料輔助
★ 巨量多輸入多輸出通訊系統
★ 領航序列汙染關鍵字(英) ★ Channel Estimation
★ Kalman Filter
★ Data-aided
★ Massive MIMO
★ Pilot Contamination論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
一、導論 1
1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文大綱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
二、系統架構 5
2.1 通道模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 分時雙工 (Time-shift TDD) 協議 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 領航序列與 ZC 序列 (pilot sequence and Zadoff-Chu sequence) . . . . . . . . . . . 8
2.3.1 領航序列 (pilot sequence,PS) . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 ZC 序列 (Zadoff-Chu sequence,ZC sequence) . . . . . . . . . . . . . . . 9
2.4 訊號模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
三、通道估計方法與估計誤差 11
3.1 通道估計方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 最小均方估計 (MMSE estimator) . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 最小平方法估計 (LS estimator) . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 最大概似估計 (ML estimator) . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 估計誤差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
iii
四、卡爾曼濾波器估計方法 17
4.1 自回歸模型 (AR Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 卡爾曼濾波器通道估計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 狀態方程式與測量方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 卡爾曼濾波器預測與更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 卡爾曼濾波器估計誤差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 資料輔助結合卡爾曼濾波器通道估計 . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 上行訊號接收與決策 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 資料輔助通道估計方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 改良卡爾曼濾波器通道估計 . . . . . . . . . . . . . . . . . . . . . . . . . 30
五、模擬結果 32
5.1 不使用資料輔助通道估計之性能表現 . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 結合資料輔助通道估計之性能表現 . . . . . . . . . . . . . . . . . . . . . . . . . . 35
六、結論與未來展望 37
圖目錄
2.1 通訊環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 TDD 協議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 資料輔助通道估計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 不同天線數量下,各個通道估計之 MSE 比較 (PS 發射功率 ? = 30??) . . . . . . . 33
5.5 不同 PS 發射功率下,各個通道估計之 MSE 比較 (天線數 ? = 200) . . . . . . . . 34
5.6 結合資料輔助方法之 KF 通道估計 . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 不同天線數量下,結合資料輔助方法之 KF 通道估計之性能 . . . . . . . . . . . . . 36
表目錄
5.1 模擬參數設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32參考文獻 [1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–3600, 2010.
[2] E. Björnson, E. G. Larsson, and M. Debbah, “Massive mimo for maximal spectral efficiency: How many users and pilots should be allocated?” IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1293–1308, 2016.
[3] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
[4] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO. Cambridge University Press, Nov. 2016.
[5] F. A. P. De Figueiredo, F. A. C. M. Cardoso, I. Moerman, and G. Fraidenraich, “Channel estimation for massive mimo tdd systems assuming pilot contamination and frequency selective fading,” IEEE Access, vol. 5, pp. 17 733–17 741, 2017.
[6] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “The multicell multiuser mimo uplink with very large antenna arrays and a finite-dimensional channel,” IEEE Transactions on Communications, vol. 61, no. 6, pp. 2350–2361, 2013.
[7] H. Kim, S. Kim, H. Lee, and J. Choi, “Massive mimo channel prediction: Machine learning versus kalman filtering,” in 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.
[8] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Prentice Hall, 2002.
[9] B. Sklar, “Rayleigh fading channels in mobile digital communication systems. i. characterization,” IEEE Communications Magazine, vol. 35, no. 9, pp. 136–146, 1997.
[10] E. Björnson, J. Hoydis, and L. Sanguinetti. 2017.
[11] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell tdd systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2640–2651, 2011.
[12] D. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Transactions on Information Theory, vol. 18, no. 4, pp. 531–532, 1972.
[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Pearson, 1993, vol. 1.
[14] J.-C. Lin, “Least-squares channel estimation assisted by self-interference cancellation for mobile prp-ofdm applications,” in 2008 IEEE International Conference on Communications, 2008, pp. 578–583.
[15] J.-C. Lin, “Channel estimation assisted by postfixed pseudo-noise sequences padded with null samples for mobile ofdm communications,” in 2008 IEEE Wireless Communications and Networking Conference, 2008, pp. 846–851.
[16] J.-C. Lin, “Least-squares channel estimation for mobile ofdm communication on time-varying frequency-selective fading channels,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3538–3550, 2008.
[17] S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice Hall, 1996.
[18] W. C. Jakes, Microwave Mobile Communications. Wiley-IEEE Press, 1994, vol. 2.
[19] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser mimo systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.
[20] H. Taleb, K. Khawam, S. Lahoud, M. E. Helou, and S. Martin, “Pilot contamination mitigation in massive mimo cloud radio access networks,” IEEE Access, vol. 10, pp. 58 212–58 224,2022.
[21] X. Zhu, L. Dai, Z. Wang, and X. Wang, “Weighted-graph-coloring-based pilot decontamination for multicell massive mimo systems,” IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2829–2834, 2017.
[22] J. Ma and L. Ping, “Data-aided channel estimation in large antenna systems,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3111–3124, 2014.
[23] Z. Gong, C. Li, and F. Jiang, “Pilot contamination mitigation strategies in massive mimo systems,” IET Communications, vol. 11, pp. 2403–2409, 2017.
[24] F. Fernandes, A. Ashikhmin, and T. L. Marzetta, “Inter-cell interference in noncooperative tdd large scale antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 192–201, 2013.
[25] E. A. Kadir, R. Shubair, S. K. Abdul Rahim, M. Himdi, M. R. Kamarudin, and S. L. Rosa,“B5g and 6g: Next generation wireless communications technologies, demand and challenges,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 2021, pp. 1–6.指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2024-7-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare