博碩士論文 109232013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.128.199.242
姓名 謝宗祐(Tsung-Yu Hsieh)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 以雷射測距儀量測古典吉他弦與音箱結構之共振耦合
(Study of acoustic coupling between the strings and the body of classical guitars using laser displacement sensor)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 銦鋁砷化鎵/磷化銦二維光子晶體光耦合器之模擬與製作
★ 應用奈米小球製作之波導模態共振器★ 光子晶體異常折射之能流研究
★ 氮化鎵光子晶體共振腔★ 分析BATC大視野多色巡天計畫中正常星系的質光比
★ 新型中空多模干涉分光器★ 表面電漿對於半導體發光元件光萃取效率的影響之探討
★ 奈米壓印微影技術實作二維光子晶體元件★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討古典吉他弦與音箱結構之共振耦合現象。了解不僅是吉他面板振動頻率與弦音相當時會產生狼音,當弦音與音孔空氣振動頻率接近或相同時同樣會產生強耦合並形成狼音。我們將透過數值模擬及實驗兩種方式來了解當弦音掃頻經過吉他空氣共振頻率時對於吉他音色的影響。
首先,於數學模擬中透過將吉他二自由度系統的耦合數學模型,模擬了吉他音箱的面板和音孔空氣的質量,並由此擴展為吉他弦和音孔空氣間的耦合。透過實際實驗我們使用了雷射測距儀及開發聲音脈衝激發裝置,這兩種設備皆為非接觸式量測及激發,以獲得A、B古典吉他音箱的空氣共振頻率和面板模式頻率響應。接著,我們組合了一套推拉力計和電動移動平台,實現了對吉他弦的定量撥動。實驗結果將針對弦音與空氣共振頻率品質因子、耦合因子、振幅進行討論。最後,結果表明在演奏時根據具體情況選擇合適的撥弦、彈奏方式和琴弦,可以減少狼音對吉他音色的影響。

關鍵字:狼音,二自由度系統,古典吉他,雷射測距儀,非接觸激發,耦合因子。
摘要(英) This study aims to investigate the resonance coupling phenomenon between classical guitar strings and the structure of the soundbox. It is understood that not only does the occurrence of beat tones happen when the vibration frequency of the guitar′s soundboard matches that of the strings, but also strong coupling and beat tones are formed when the frequencies of the strings and the air piston vibration are close or identical. Through both numerical simulations and experimental approaches, we seek to understand the impact of string frequency sweeping through the guitar′s air resonance frequencies on the instrument′s tone quality.
Initially, mathematical simulations involve coupling models of a two degree of freedom system of the guitar, simulating the mass of the soundboard and the air piston in the soundhole, which is then extended to the coupling between the guitar strings and the air in the soundhole. In practical experiments, laser rangefinders and a sound pulse excitation device, both of which are non-contact measurement and excitation tools, are employed to obtain the air resonance frequencies and soundboard mode frequency responses of Classical Guitars A and B. Subsequently, a combination of a tension gauge and an electrically driven moving platform is used to achieve quantitative plucking of the guitar strings. Experimental results will be discussed regarding the quality factor, coupling factor, amplitude, and spectral energy of string and air resonance frequencies.

Ultimately, the results indicate that selecting appropriate plucking techniques, playing styles, and strings based on specific conditions can mitigate the influence of beat tones on the tone quality of the guitar during performance.
Keywords: wolf tone, two degree of freedom system, classical guitar, laser displacement sensor, non-contact excitation, coupling factor.
關鍵字(中) ★ 狼音
★ 二自由度系統
★ 古典吉他
★ 雷射測距儀
★ 非接觸激發
★ 耦合因子
關鍵字(英) ★ wolf tone
★ two degree of freedom system
★ classical guitar
★ laser displacement sensor
★ non-contact excitation
★ coupling factor
論文目次 摘要 i
ABSTRACT v
目錄 ix
圖目錄 xi
表目錄 xiii
第一章、緒論 1
1-1 前言 1
1-2 吉他音箱的頻率響應 3
1-3 吉他構造與性質 7
1-3-1 吉他起源與各部位名稱及功用 7
1-3-2 吉他各部位木材材質及面板選擇 10
1-4 吉他的聲學原理 13
1-4-1 吉他的發聲方式 13
1-4-2 吉他音箱部件影響吉他音色程度 14
1-5 吉他琴弦與音箱耦合的發展 16
1-6 結論 23
第二章、吉他自由度系統耦合模擬 25
2-1 狼音與強和弱耦合 26
2-1-1 狼音與強和弱耦合介紹 26
2-1-2 強與弱耦合定義 28
2-2 單自由度系統 32
2-2-1 單自由度系統理論 32
2-2-2 單自由度阻尼振盪系統 34
2-2-3 單自由度受迫振盪系統 38
2-2-4 品質因子Q值定義及推導 40
2-3 二自由度系統 45
2-3-1 二自由度系統理論 45
2-3-2 吉他二自由度系統理論 49
2-3-3 吉他弦與空氣模式模擬原理 52
2-4 結論 55
第三章、古典吉他振動實驗 57
3-1 雷射測距儀 57
3-2 撥弦設備 59
3-3 聲音脈衝激發於古典吉他音箱內設備 63
3-4 結論 67
第四章、吉他弦與空氣模式模擬與實驗分析 68
4-1 聲音脈衝激發於古典吉他音箱內頻譜分析 68
4-2 吉他弦與空氣模式模擬 72
4-2-1 吉他弦與空氣模式模擬之物理參數 74
4-2-2 吉他弦與空氣模式模擬結果 76
4-3 吉他弦掃頻 81
4-3-1 吉他弦掃頻實驗與模擬結果 82
4-3-2 吉他弦掃頻對弦音與空氣共振品質因子及耦合因子影響 85
4-3-3 吉他弦掃頻對弦音與空氣共振振幅影響 89
4-4 結論 93
第五章、結論與未來展望 96
5-1 結論 96
5-2 未來展望 99
參考文獻 100
參考文獻 [1] I. M. Firth, "Physics of the guitar at the Helmholtz and first top‐plate resonances," The Journal of the Acoustical Society of America, vol. 61, no. 2, pp. 588-593, 1977, doi: 10.1121/1.381302.
[2] O. Christensen and B. B. Vistisen, "Simple model for low‐frequency guitar function," The Journal of the Acoustical Society of America, vol. 68, no. 3, pp. 758-766, 1980, doi: 10.1121/1.384814.
[3] T. D. Rossing, J. Popp, and D. Polstein, "Acoustical response of guitars," in Proc. of SMAC, 1985, vol. 83.
[4] G. Cuzzucoli and V. Lombardo, "A Physical Model of the Classical Guitar, Including the Player′s Touch," Computer music journal, vol. 23, no. 2, pp. 52-69, 1999, doi: 10.1162/014892699559751.
[5] R. Bader, Computational Mechanics of the Classical Guitar [electronic resource] / by Rolf Bader. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2005.
[6] D. P. Hess, "Frequency Response Evaluation of Acoustic Guitar Modifications," Savart journal, vol. 1, no. 5, pp. 1-8, 2015.
[7] M. K. Lee, M. Hosseini Fouladi, and S. N. Namasivayam, "Mathematical Modelling and Acoustical Analysis of Classical Guitars and Their Soundboards," Advances in Acoustics and Vibration, vol. 2016, pp. 1-10, 2016, doi: 10.1155/2016/6084230.
[8] R. Mores, "Sound tuning in asymmetrically braced guitars," The Journal of the Acoustical Society of America, vol. 149, no. 2, pp. 1041-1057, 2021, doi: 10.1121/10.0003378.
[9] M. Chen, A. Kotlicki, C. Waltham, N. Wolfe, J. Fei Yu, and C. Zhu, "Vibrational behavior of a soundbox in an atmosphere with a variable speed of sound," The Journal of the Acoustical Society of America, vol. 131, no. 3, pp. 2495-2499, 2012, doi: 10.1121/1.3677250.
[10] J. E. Popp, "Four mass coupled oscillator guitar model," The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 829-836, 2012, doi: 10.1121/1.3652849.
[11] A. Uncini, Digital audio processing fundamentals / Aurelio Uncini, 1st 2022. ed. (Springer Topics in Signal Processing Series). Cham, Switzerland: Springer Nature Switzerland AG, 2022.
[12] R. M. French, Technology of the Guitar, 1. Aufl. ed. New York: Springer US, 2012.
[13] R. Bader, Springer Handbook of Systematic Musicology [electronic resource] / edited by Rolf Bader, 1st 2018. ed. (Springer Handbooks). Berlin, Heidelberg: Springer Berlin Heidelberg, 2018.
[14] J. R. Alves, "The History of the Guitar," ed: Marshall Digital Scholar, 2015.
[15] I. Sloane, Classic guitar construction. Bold Strummer, 1989.
[16] B. C. Bennett, "The Sound of Trees: Wood Selection in Guitars and Other Chordophones," Economic botany, vol. 70, no. 1, pp. 49-63, 2016, doi: 10.1007/s12231-016-9336-0.
[17] T. Gore, "Wood for guitars," The Journal of the Acoustical Society of America, vol. 129, no. 4, pp. 2519-2519, 2011, doi: 10.1121/1.3588331.
[18] R. M. French, Acoustic Guitar Design. Cham: Springer International Publishing AG, 2022.
[19] P. Dumond and N. Baddour, "Effects of using scalloped shape braces on the natural frequencies of a brace-soundboard system," Applied acoustics, vol. 73, no. 11, pp. 1168-1173, 2012, doi: 10.1016/j.apacoust.2012.05.015.
[20] M. J. Elejabarrieta, A. Ezcurra, and C. Santamarıa, "Coupled modes of the resonance box of the guitar," The Journal of the Acoustical Society of America, vol. 111, no. 5, pp. 2283-2292, 2002.
[21] R. Bader, "Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar," The Journal of the Acoustical Society of America, vol. 131, no. 1, pp. 819-828, 2012, doi: 10.1121/1.3651096.
[22] R. R. Boullosa, "A Note on the Sound Radiation from the Classical Guitar: Influence of Energy Input Via the String Termination at the Fret," Acta acustica united with Acustica, vol. 89, no. 4, pp. 718-721, 2003.
[23] C. E. Gough, "The Theory of String Resonances on Musical Instruments," Acta acustica united with Acustica, vol. 49, no. 2, pp. 124-141, 1981.
[24] J. Woodhouse, "On the Synthesis of Guitar Plucks," Acta acustica united with Acustica, vol. 90, no. 5, pp. 928-944, 2004.
[25] S. Benacchio, A. Mamou-Mani, B. Chomette, and V. Finel, "Active control and sound synthesis—two different ways to investigate the influence of the modal parameters of a guitar on its sound," The Journal of the Acoustical Society of America, vol. 139, no. 3, pp. 1411-1419, 2016, doi: 10.1121/1.4944572.
[26] M. Laurson, C. Erkut, V. Välimäki, and M. Kuuskankare, "Methods for Modeling Realistic Playing in Acoustic Guitar Synthesis," Computer music journal, vol. 25, no. 3, pp. 38-49, 2001, doi: 10.1162/014892601753189529.
[27] G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, "Time-domain simulation of a guitar: model and method," The Journal of the Acoustical Society of America, vol. 114, no. 6 Pt 1, pp. 3368-3383, 2003, doi: 10.1121/1.1629302.
[28] B. E. Richardson, "Simple Models as a Basis for Guitar Design," CAS Journal, vol. 4, no. 5, pp. 30-36, 2002.
[29] B. Richardson, H. Johnson, A. Joslin, and I. Perry, "The three-mass model for the classical guitar revisited," 2012.
[30] A. Zhang and J. Woodhouse, "On the playability of wolf note," in Proceedings of the International Conference on Noise and Vibration Energy, 2014, pp. 31-37.
[31] C. E. Gough, "The Resonant Response of a Violin G-string and the Excitation of the Wolf-Note," Acta acustica united with Acustica, vol. 44, no. 2, pp. 113-123, 1980.
[32] I. M. Firth and J. M. Buchanan, "The wolf in the cello," The Journal of the Acoustical Society of America, vol. 53, no. 2, pp. 457-463, 1973, doi: 10.1121/1.1913343.
[33] V. Debut, O. Inacio, T. Dumas, and J. Antunes, "Modelling and experiments on string/body coupling and the effectiveness of a cello wolf-killing device," ISMA2010 proceedings, Katoomba, 2010.
[34] V. Debut, J. Antunes, and O. Inacio, "What can we learn about the wolf phenomenon from a linearized analysis?," 2012.
[35] P. Neubauer, J. Tschesche, J. Bös, T. Melz, and H. Hanselka, "An active-system approach for eliminating the wolf note on a cello," The Journal of the Acoustical Society of America, vol. 143, no. 5, pp. 2965-2974, 2018, doi: 10.1121/1.5037467.
[36] M. Campbell and C. A. Greated, The musicians′ guide to acoustics / Murray Campbell and Clive Greated, 1st American ed. New York: Schirmer Books, 1988.
[37] G. Cuzzucoli and M. Garrone, Classical guitar design [electronic resource] / by Giuseppe Cuzzucoli, Mario Garrone. Cham: Springer International Publishing, 2020.
[38] B. E. Richardson, "The acoustical development of the guitar," Catgut Acoustical Society Journal, vol. 2, no. 5, pp. 1-10, 1994.
[39] W. Roberts and B. Richardson, "Perceptual thresholds for stringbody coupling in plucked-string instruments," in Proceedings of the International Symposium on Musical Acoustics, 2014, vol. 465, p. 470.
[40] O. Inácio, J. Antunes, and M. C. M. Wright, "Computational modelling of string–body interaction for the violin family and simulation of wolf notes," Journal of sound and vibration, vol. 310, no. 1, pp. 260-286, 2008, doi: 10.1016/j.jsv.2007.07.079.
[41] J. C. Schelleng, "The Violin as a Circuit," CAS Journal, vol. 4, no. 3, pp. 13-25, 2001.
[42] T. D. Rossing, The science of string instruments. Springer, 2010.
[43] T. Rossing, Springer handbook of acoustics. Springer Science & Business Media, 2007.
[44] N. H. Fletcher and T. D. Rossing, The physics of musical instruments. Springer Science & Business Media, 2012.
[45] C. E. Gough, "Acoustical studies of stringed instruments using string resonances," Proceedings of SMAC83, pp. 19-45, 1983.
[46] R. WOLFSON, ESSENTIAL UNIVERSITY PHYSICS: Volume 1 & 2 Pack, Global Edition. Pearson Education Limited, 2020.
[47] H. D. Young, R. A. Freedman, and L. A. Ford, University physics with modern physics. 2020.
[48] S. S. Rao, "Mechanical vibrations fifth edition," ed, 2011.
[49] E. I. Green, "THE STORY OF Q," American scientist, vol. 43, no. 4, pp. 584-594, 1955.
[50] J. O. Smith, Introduction to digital filters: with audio applications. Julius Smith, 2007.
[51] S. G. Kelly, Mechanical vibrations: theory and applications. Cengage learning, 2012.
[52] A. Sinha, Vibration of mechanical systems. Cambridge University Press, 2010.
[53] W. T. Thomson, Theory of vibration with applications [by] William T. Thomson. Englewood Cliffs, N.J: Prentice-Hall, 1972.
[54] G. Strang, Differential equations and linear algebra / Gilbert Strang. Wellesley, MA: Wellesley-Cambridge, 2014.
[55] M. French, "Structural modification of stringed instruments," Mechanical systems and signal processing, vol. 21, no. 1, pp. 98-107, 2007, doi: 10.1016/j.ymssp.2006.01.002.
[56] R. M. French, Engineering the guitar: theory and practice. Springer Science & Business Media, 2008.
[57] D. J. Ewins, Modal testing : theory, practice, and application / D.J. Ewins, 2nd ed. (Mechanical engineering research studies. Engineering dynamics series ; 10.). Baldock, Hertfordshire, England ;: Research Studies Press, 2000.
[58] ILD-2300-2雷射測距儀,. https://www.micro-epsilon.com/download/products/cat--optoNCDT--en.pdf。 (accessed.
[59] J. Woodhouse, "Plucked Guitar Transients: Comparison of Measurements and Synthesis," Acta acustica united with Acustica, vol. 90, no. 5, pp. 945-965, 2004.
[60] 雷射測距儀量測模式. [Online]. Available: https://www.micro-epsilon.com/download/manuals/man--optoNCDT-2300--en.pdf。
[61] 蘇冠丞, "奈米精密度雷射測距儀量測與比較吉他音色與音量之研究 ", Measurement and comparison of timbre and sound level of guitars using displacement sensor with nanometer precision, 國立中央大學光電科學與工程學系碩士論文, 2021.
[62] J. Woodhouse, "A necessary condition for double-decay envelopes in stringed instruments," The Journal of the Acoustical Society of America, vol. 150, no. 6, pp. 4375-4384, 2021, doi: 10.1121/10.0009012.
[63] M. A. Pérez, A. Manjón, J. Ray, and R. Serra-López, "Experimental assessment of the effect of an eventual non-invasive intervention on a Torres guitar through vibration testing," Journal of cultural heritage, vol. 27, pp. S103-S111, 2017, doi: 10.1016/j.culher.2016.04.011.
[64] Hannabach. ""600 SILVER-PLATED."." http://www.hannabach.com/en/strings/600-silver-plated (accessed.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2024-4-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明