博碩士論文 111429018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.224.54.118
姓名 林玉智(Yu-Chih Lin)  查詢紙本館藏   畢業系所 經濟學系
論文名稱 美國短中長期公債殖利率預測
相關論文
★ 消費財富效果不對稱分析: 馬可夫轉換共同趨勢模型之應用★ 股票市場報酬與波動性外溢效果分析
★ 中國大陸勞動合同法與企業所得稅法對台商的衝擊與因應★ 結構FAVAR模型與台灣貨幣政策分析
★ 通貨膨脹率預測:考慮結構變動之動態因子模型應用★ 匯率因子與市場基要之預測表現
★ 台灣大小公司報酬與流動性之實證研究★ 台灣外匯暨股票市場流動性與景氣循環關係之探討
★ 台灣經濟成長率之混合頻率預測-MIDAS迴歸應用★ 油價對匯率預測能力之分析
★ 重新驗證遠期匯率不偏性假說: Bonferroni Q 檢定之應用★ 台灣期貨市場處份效果之研究
★ 寡占廠商成本歧異下之最適產業與貿易政策★ The Macroeconomic Effects of Foreign Direct Investment
★ 平行輸入、仿冒與服務品質★ 經濟成長、消費者信心與銀行風險
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 美國公債殖利率對經濟影響重大,利率期限結構和殖利率曲線變化常被用來 預測景氣循環的變化。一般而言,美國公債殖利率與聯邦基金利率關係緊密,市場 依據聯準會的公開信息預測殖利率。然而,近年來因疫情、烏俄戰爭和能源危機, 通膨問題嚴峻,聯準會為穩住經濟而頻繁調整貨幣政策,導致預測難度增加。
本研究旨在利用更多元的總體經濟、貨幣政策和金融變數,構建模型來預測美 國公債殖利率。傳統線性預測方法容易因過度擬合而影響準確性,因此引入機器學 習方法解決非線性問題和高維度數據處理,通過比較不同的機器學習預測模型與 傳統迴歸模型,尋找短中長期公債殖利率的最佳預測方法。
研究結果顯示,傳統基準模型適合極短期預測,但隨預測期延長,預測能力下降。 機器學習模型在處理高維度非線性數據上表現出色,特別是在兩期以上的預測中 更準確。其中,隨機森林模型在短中長期美國公債殖利率預測中表現最佳且穩定。 深度神經網絡模型在八期以上的預測中表現良好,但在面對緊急政策調整時誤差 較大。總體而言,隨機森林模型在短中長期美國公債殖利率預測中均展現出高度穩 定性和準確性。
摘要(英) U.S. Treasury yields have a significant impact on the economy, and the term structure of interest rates and changes in the yield curve are often used to predict economic cycles. Generally, U.S. Treasury yields are closely related to the federal funds rate, with the market predicting yields based on information released by the Federal Reserve. However, in recent years, the severe inflation problems caused by the pandemic, the Russia-Ukraine war, and the energy crisis have led to frequent adjustments in monetary policy by the Federal Reserve to stabilize the economy, increasing the difficulty of making accurate predictions.
This study aims to construct a model to predict U.S. Treasury yields using a more diverse set of macroeconomic, monetary policy, and financial variables. Traditional linear prediction methods often suffer from overfitting, affecting accuracy. Therefore, machine learning methods are introduced to address nonlinear issues and handle high-dimensional data. By comparing different machine learning prediction models with traditional regression models, the study seeks to identify the best prediction method for short, medium, and long-term Treasury yields.
The research results indicate that traditional benchmark models are suitable for extremely short-term predictions, but their predictive ability declines as the forecast period extends. Machine learning models excel in handling high-dimensional nonlinear data, particularly showing greater accuracy in predictions beyond two periods. Among them, the random forest model performs best and remains stable in predicting short, medium, and long-term U.S. Treasury yields. The deep neural network model performs well in predictions beyond eight periods but shows larger errors when faced with emergency policy adjustments. Overall, the random forest model demonstrates high stability and accuracy in predicting short, medium, and long-term U.S. Treasury yields.
關鍵字(中) ★ 美國公債殖利率
★ 機器學習預測
★ 利率期限結構
關鍵字(英) ★ US Treasury Yield
★ Machine Learning Prediction
★ Yield Curve Structure
論文目次 目錄
摘要 I
ABSTRACT I
誌謝III
第壹章 緒論 - 1 -
第一節 研究背景 - 1 –
第二節 研究動機與目的 - 4 -
第貳章 文獻回顧 - 5 -
第一節 利率結構相關文獻 - 5 –
第二節 機器學習模型與美國公債殖利率變數選擇相關文獻 - 6 -
第參章 研究方法 - 8 -
第一節 數據資料 - 8 –
第二節 滾動窗口 - 12 –
第三節 方法論 - 13 –
第四節 模型設定 - 13 -
一、基準模型 - 13 –
二、機器學習模型 - 14 –
三、誤差模型 - 22 -
第肆章 實證結果分析 - 23 -
第一節 實證結果 - 23 –
一、長期美國公債殖利率預測結果 - 23 –
二、中期美國公債殖利率預測結果 - 24 –
三、短期美國公債殖利率預測結果 - 25 -
第伍章 結論與建議 - 31 -
第一節 結論 - 31 –
第二節 建議 - 32 -
參考文獻 - 33 -
英文文獻 - 33 –
中文文獻 - 34 -
參考文獻 英文文獻
1. Ali, Z. H., and Burhan, A. M. (2023) “Hybrid Machine Learning Approach for Construction Cost Estimation: An Evaluation of Extreme Gradient Boosting Model”, Asian Journal of Civil Engineering, 24, 2427–2442.
2. Breiman, L. (1996), “Bagging Predictors Machine Learning”, 24, 123–140.
3. --------------- (2001), “Random Forests Machine Learning”, 45, 5–32.
4. Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985), “A Theory of the Term Structure
of Interest Rates”, In Theory of valuation (pp. 129-164).
5. Dunn, K. (2021), “Avoid R-squared to judge regression model performance”, Towards Data Science.
6. Fisher, I(1896), “Appreciation and Interest: A Study of the Influence of Monetary Appreciation and Depreciation on the Rate of Interest with Applications to the Bimetallic Controversy and the Theory of Interest”, American economic association, Vol. 11, No. 4.
7. Gu, S., Kelly, B., and Xiu, D. (2020),“Empirical Asset Pricing via Machine Learning” The Review of Financial Studies, 33(5), 2223-2273.
8. Harvey, C. R. (1989), “Forecasts of Economic Growth from the Bond and Stock Markets”, Financial Analysts Journal, 45(5), 38-45.
9. Hastie, T., Tibshirani, R., and Friedman, J. (2001), “The Elements of Statistical Learning: Data Mining, Inference and Prediction”, New York: Springer.
10. Hoerl, A. E., and Kennard, R. W. (1970), “Ridge Regression: Biased Estimation for Nonorthogonal Problems”, Technometrics, 12(1), 55–67.
11. Luque Raya, I.M. and Luque Raya, P. (2023), "Machine learning algorithms applied to the estimation of liquidity: the 10-year United States treasury bond", European Journal of Management and Business Economics.
12. Malkiel, B. G.(1973), “A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing”, W. W. Norton & Company.
13. Medeiros, M. C., Vasconcelos, G. F. R., Veiga, Á ., and Zilberman, E. (2019).,
“Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine
Learning Methods”, Journal of Business & Economic Statistics, 39(1), 98–119.
- 33 -
14. Medeiros, M. C., and Mendes, E. (2016), “l1-Regularization of High-Dimensional Time-Series Models With Non-Gaussian and Heteroskedastic Errors,” Journal of Econometrics, 191, 255–271.
15. Schwarz, G. E.(1978), “Estimating the dimension of a model”, Annals of Statistics 6(2): 461–464.
16. Shiller, R. J., and McCulloch, J. H. (1990). “The term structure of interest rates”, Handbook of monetary economics, 1, 627-722.
17. Tibshirani, R. (1996), “Regression Shrinkage and Selection via the LASSO,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
18. Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via the Elastic Net,” Journal of the Royal Statistical Society, Series B, 67, 301–320.
19. Zou, H. (2006), “The Adaptive LASSO and Its Oracle Properties,” Journal of the American Statistical Association, 101, 1418–1429.

中文文獻
1. 李怡庭(2021),「貨幣銀行學(四版)」,雙葉書廊
2. 延任(2022),「美國公債殖利率與市場指數關聯性實證研究」,國立臺灣
大學經濟系在學專班碩士論文
3. 葉憲之(2023),「參加美國紐約聯邦準備銀行「貨幣政策執行」研習課程
出國報告」,中央銀行
4. 簡嘉瑛(2009),「美國公債殖利率與景氣循環指標間關聯性之探討」,國
立中央大學財務金融學系碩士論文
指導教授 徐之強(Chih-Chiang Hsu) 審核日期 2024-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明