博碩士論文 111429008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:3.147.81.172
姓名 劉晉廷(Chin-Ting Liu)  查詢紙本館藏   畢業系所 經濟學系
論文名稱 運用總體經濟變數預測日經指數報酬率
相關論文
★ 運用機器學習方法預測股價報酬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討了將總體經濟變數建構資料並運用機器學習方法應用於日經指數超額報酬預測的有效性。近年來,隨著人工智慧與機器學習的迅速發展,這些技術已被廣泛應用於金融領域,尤其是股票報酬的預測,而2023年亞洲股市又以日本股市表現最佳,眾多因素創下了歷史新高點。本文回顧了機器學習在股票市場中的應用歷程,並引入了多種機器學習模型,包括線性及非線性機器學習模型,運用於預測日本股市的超額報酬。研究期間從2000年1月至2023年9月,共285個觀測值,使用30個總體經濟預測因子,並加入了11種不同的機器學習方法以評估這些模型在預測短期、中長期、長期股票報酬方面的表現,計算各期間模型之指數超額報酬預測,比較各自樣本外RMSE及MAE數值大小,且利用樣本外預測(Out-Of-Sample){ R}_{os}^{2 }準則來評估是否優於基準模型。
研究結果發現在向前一期的預測表現優於其他期間。整體來說,線性機器學習模型表現上皆優於非線性機器學習模型。在短、中長期預測中,線性機器學習模型以LASSO、Elastic net表現最佳,長期預測則為Ridge;而非線性機器學習模型則是不管短中長期預測皆以隨機森林模型表現最佳。進一步與基準模型評比,結果發現短期中所有模型皆優於基準模型;中長期當中,線性機器學習模型幾乎優於基準模型,但非線性機器學習模型皆劣於基準模型;最後在長期當中,只有 Ridge優於基準模型,其餘模型皆劣於基準模型。因此本研究旨在選擇最適合預測日本股市超額報酬的機器學習模型,以幫助投資者提高投資決策的準確性,並實現更穩定的投資報酬。
摘要(英) This study examines the effectiveness of applying machine learning methods to predict the excess returns of the Nikkei 225 index using constructed macroeconomic data. With the rapid development of artificial intelligence and machine learning in recent years, these technologies have been widely utilized in the financial domain, particularly in stock return prediction. The Asian stock market, notably the Japanese stock market, performed exceptionally well in 2023, reaching historic highs due to various factors. This paper reviews the application of machine learning in the stock market and introduces multiple machine learning models, including both linear and nonlinear ones, to forecast excess returns in the Japanese stock market. The study period spans from January 2000 to September 2023, totaling 285 observations, utilizing 30 macroeconomic predictor variables. Twelve different machine learning methods are incorporated to evaluate their performance in predicting short-term, medium-term, and long-term stock returns. The index excess return prediction of each model is calculated for different periods, and their out-of-sample root mean square error (RMSE), mean absolute error (MAE), and out-of-sample forecasting{ R}_{os}^{2 } criteria are compared to assess whether they outperform the baseline model.
The findings reveal that the predictive performance is better for the one-step-ahead prediction compared to other horizons. Overall, linear machine learning models outperform nonlinear ones. In short and medium-term predictions, linear machine learning models, particularly LASSO and Elastic Net, exhibit superior performance, while Ridge performs best in long-term predictions. Among the nonlinear machine learning models, Random Forest consistently performs best across all prediction horizons. Further comparison with the baseline model indicates that all models outperform the baseline model in short-term predictions. In medium-term predictions, linear machine learning models almost universally outperform the baseline, while nonlinear machine learning models generally underperform. In long-term predictions, only Ridge outperforms the baseline, while other models fall short. Therefore, this study aims to select the most suitable machine learning model for predicting excess returns in the Japanese stock market, aiding investors in making more accurate investment decisions and achieving more stable investment returns.
關鍵字(中) ★ 日經指數超額報酬
★ 機器學習模型
★ RMSE及MAE
★ 樣本外預測
關鍵字(英) ★ Nikkei Index Excess Returns
★ Machine Learning Models
★ RMSE and MAE
★ Out-Of-Sample forecasting
論文目次 頁次
摘要 i
Abstract ii
誌謝 iv
圖目錄 vii
表目錄 viii
第一章、緒論 1
1-1研究動機 1
1-2研究目的 3
1-3研究架構 4
第二章、文獻回顧 5
2-1總體經濟指標與股市相關研究 5
2-2機器學習預測相關模型 7
第三章、研究方法 9
3-1資料來源及研究變數 9
3-1-1資料來源 9
3-1-2變數挑選 9
3-2預測模型 16
3-2-1樣本外預測模型 16
3-2-2組合預測 17
3-2-3時間序列基準模型 18
3-3線性機器學習模型 18
3-3-1 LASSO 18
3-3-2 Adaptive LASSO (adaLASSO) 20
3-3-3 Elastic Net (EN) 20
3-3-4 Adaptive Elastic Net (adaEN) 21
3-3-5 Ridge Regression 22
3-3-6 Forward Regression 22
3-3-7因子模型 23
3-4非線性機器學習模型 23
3-4-1 Bagging 23
3-4-2 xgboost 24
3-4-3隨機森林模型(RF) 25
3-4-4組合式預測法(隨機森林-OLS) 27
第四章 實證結果 28
4-1實證資料 28
4-1-1日經指數超額報酬率 28
4-1-2資料處理 29
4-2機器學習模型實證分析 30
4-2-1模型評估 31
4-2-2向前一期預測(h=1) 33
4-2-3向前兩期預測(h=2) 35
4-2-3向前三期預測(h=3) 37
4-2-3向前六期預測(h=6) 39
第五章、結論與建議 42
參考文獻 44
參考文獻 王鼎宏,2016,「使用機器學習方法預測加權指數之研究」,國立成功大學,經營管理碩士學位學程,碩士論文。
莊寧,2020,「運用機器學習技術預測股市走勢」,國立陽明交通大學,資訊管理學程,碩士論文。
Adam, M., and Tweneboah, G (2008), "Macroeconomic Factors and Stock Market Movement: Evidence from Ghana", Social Science Research Network.
Addo, A., and Sunzuoye, F (2013), "The Impact of Treasury Bill Rate and Interest Rate on the Stock Market Returns: Case of Ghana Stock Exchange", European Journal of Business and Economics, 8(2), 15–24.
Alam, M., and Uddin, G. S (2009), "Relationship between Interest Rate and Stock Price: Empirical Evidence from Developed and Developing Countries", International Journal of Business and Management, 4(3), 43–51.
Bai, J., and Ng, S (2008), "Forecasting Economic Time Series Using Targeted Predic tors ", Journal of Econometrics, 146, 304–317.
Boyd, J. H., Hu, J., and Jagannathan, J (2005), "The Stock Market′s Reaction to Unemployment News: ′Why Bad News is Usually Good for Stocks′ ", The Journal of Finance, 60(2), 649–672.
Breiman, L (1996), "Bagging Predictors ", Machine Learning, 24, 123–140.
Breiman, L (2001), "Random Forests ", Machine Learning, 45, 5–32.
Butaru, F., Q. Chen, B. Clark, S. Das, A. W. Lo, and A. Siddique (2016), "Risk and risk management in the credit card industry ", Journal of Banking and Finance 72:218–39.
Campbell, J. Y., and Thompson, S. B (2008), "Predicting excess stock returns out of sample: Can anything beat the historical average? ", The Review of Financial Studies, 21(4), 1509-1531.
Chinco, A., Clark-Joseph, A. D., and Ye, M (2019), "Sparse signals in the cross-section of returns", Journal of Finance, 74(1), 449–492.
El Mazgualdi, C., Masrour, T., El Hassani, I., and Khdoudi, A (2021), "Machine learning for KPIs prediction: a case study of the overall equipment effectiveness within the automotive industry". Soft Computing, 25(4), 2891-2909.
Fama, E. F., and French, K. R (1988), "Dividend yields and expected stock returns", Journal of Financial Economics, 21(1), 3– 25.
Gasparėnienė, L., Remeikiene, R., Sosidko, A., and Vėbraitė, V (2021), "A modelling of S&P 500 index price based on US economic indicators: Machine learning approach", Engineering Economics, 32(4), 362-375.
Goyal, A., and Welch, I (2008), "A comprehensive look at the empirical performance of equity premium prediction", Review of Financial Studies, 21(4), 1455–1508.
Gu, S., B. T. Kelly, and D. Xiu (2018), "Empirical Asset Pricing via Machine Learning", Manuscript.
Han, Y., A. He, D. E. Rapach, and G. Zhou (2019), "What Firm Characteristics Drive the Cross Section of Expected Stock Returns? ".
Hoerl, A. E., and Kennard, R. W (1970), "Ridge Regression: Biased Estimation for Nonorthogonal Problems ", Technometrics, 12, 55–67.
Ippolito, F., Ozdagli, A. K., and Perez-Orive, A (2017), "The Transmission of Monetary Policy through Bank Lending: The Floating Rate Channel", Finance and Economics Discussion Series 2017–026. Washington: Board of Governors of the Federal Reserve System.
Jiang, F., Lee, J., Martin, X., and Zhou, G (2019), "Manager sentiment and stock returns", Journal of Financial Economics, 132(1), 126–149.
Kelly, B., S. Pruitt, and Y. Su (2019), "Characteristics are covariances: A unified model of risk and return ", Journal of Financial Economics.
Kozak,S., S. Nagel, and S.Santosh (2020), "Shrinking the cross section", Journal of Financial Economics 135:271 92.
Kumari, J (2012), "Relationship between stock prices, exchange rate and the demand for money in India", Economics, Management, and Financial Markets, 7(3), 31–52.
Kvietkauskiene, A., and Plakys, M (2017), "Impact indicators for stock markets return", Poslovna Izvrsnost, 11(2), 59–84.
Liu, M. H., and Shrestha, K (2008), "Analysis of the Long-Term Relationship between Macroeconomic Variables and the Chinese Stock Market Using Heteroskedasticity Cointegration", Managerial Finance, 34, 744–755.
Lummer, S. L., and McConnell, J. J (1989), "Further evidence on the bank lending process and the capital market response to bank loan agreements", Journal of Financial Economics, 25, 99–122.
Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., and Zilberman, E (2021), "Forecasting inflation in a data-rich environment: the benefits of machine learning methods", Journal of Business and Economic Statistics, 39(1), 98-119.
Medeiros, M., and Mendes,E (2016), "l_1-Regularization of High-Dimensional Time-Series Models With Non-Gaussian and Heteroskedastic Errors", Jour nal of Econometrics, 191, 255–271.
Moritz, B., and T. Zimmermann (2016), "Tree-based conditional portfolio sorts: The relation between past and future stock returns ", Working Paper, Ludwig Maximilian University of Munich.
Otoiu, A (2015), "Key labour market indicators. Main drivers and impact on other socio-economic phenomena: PhD thesis summary", Bucharest Academy of Economic Studies.
Patelis, A. D (1997), "Stock Return Predictability and the Role of Monetary Policy", Journal of Finance, 52(5), 1951–1972.
Prazak, T (2018), "The Effect of Economic Factors on Performance of the Stock Market in the Czech Republic", Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(6), 1613–1626.
Rapach, D. E., and Zhou, G (2020), "Time‐series and cross‐sectional stock return forecasting: New machine learning methods", Machine learning for asset management: New developments and financial applications, 1-33.
Rapach, D. E., Strauss, J. K., and Zhou, G (2010), "Out-of-sample equity premium prediction: Combination forecasts and links to the real economy", The Review of Financial Studies, 23(2), 821-862.
Rapach, D., and Zhou, G (2022), "Asset pricing: Time-series predictability".
Rapach, D., and Zhou, G. (2013), " Forecasting stock returns ", In Handbook of economic forecasting (Vol. 2, pp. 328-383). Elsevier.
Shaeri, K., and Katircioglu, S (2018), "The nexus between oil prices and stock prices of oil, technology and transportation companies under multiple regime shifts", Economic Research, 31(1), p. 681–702.
Song, S., and Bickel, PJ (2011), "Large vector auto regressions".
Tibshirani, and (1996), "Regression shrinkage and selection via the LASSO", Journal of the Royal Statistical Society Series B (Methodological), 58(1), 267–288.
Topcu, M., Unlu, U (2013), "Do investors consider composite leading indicators? Time series evidence from emerging countries".
Tsai, C. F., and Hsiao, Y. C (2010), "Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches", Decision Support Systems, 50(1), 258–269.
Zou, H. and Zhang, H. H (2009), "On the adaptive elastic-net with a diverging number of parameters ", The Annals of Statistics, 37(4):1733–1751.
Zou, H., and Hastie, T (2005), "Regularization and variable selection via the elastic net", Journal of the Royal Statistical Society Series B (Statistical Methodology), 67(2), 301–320.
指導教授 徐之強 廖志興(Chih-Chiang Hsu Chih-Hsing Liao) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明