博碩士論文 111423037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:13.59.218.229
姓名 吳季蓁(Chi-Chen, Wu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 智慧型科技如何贏得消費者的心?結合科技接受模型與慎思行動理論的深入探討:以網路銀行為例
(How Smart Technology Gains Consumer Favor? An In-depth Exploration Combining the Technology Acceptance Model and the Theory of Reasoned Action: The Case of Online Banking)
相關論文
★ 運用資料探勘法探討台灣老年人口全民健保醫療資源利用之研究★ 運用地理資訊系統與資料探勘技術於基層診所選址分析與研究─以台北市為例
★ 以醫師觀點探討看診輔助系統建置之研究★ 以創新抗拒觀點探討消費者對客服機器人使用意圖之研究
★ 網路拍賣頁面相關的服務品質 對賣家經營績效之影響★ 多重商品類別的線上再購行為預測模型
★ 以使用與滿足理論與科技接受模式探討人機介面對網購意願之影響★ 整合網路口碑之個人化醫療院所推薦系統-以牙醫診所為例
★ 網路口碑影響智慧型手機銷售量的時間動態分析★ 運用資料探勘技術於建置招生 決策支援系統之研究
★ 評估臨床決策支援系統對候診時間與 醫病關係之影響★ 高等教育招生決策支援系統建構之研究
★ 以社會網路分析觀點探討巨量資料在健康保健領域之研究發展★ 醫療App人機互動設計對使用者滿意度之研究
★ 社群媒體粉絲頁經營之研究─ 以Facebook某健康粉絲頁為例★ 基於網路口碑與醫療利用理論之混合式推薦系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 在智慧型服務日益普及的時代,理解使用者轉換意圖的影響因素對於企業及學術界至關重要。本研究基於科技接受模型(TAM, Technology Acceptance Model)和慎思行動理論(TRA, Theory of Reasoned Action),以網路銀行為主要實驗對象,探討感知彈性、相容性及感知信任等變數如何影響智慧型服務使用者的轉換意圖。
研究分為兩個階段進行。第一階段通過問卷調查收集資料,共獲得271份有效樣本,並使用SPSS 23和SmartPLS 4.1.0.1進行分析。結果顯示,相容性、感知彈性、感知易用性、感知實用性、感知信任以及主觀規範均對轉換意圖有顯著影響,這些因素能有效提高使用者對智慧型服務的接受度和使用意願。然而,感知彈性對感知易用性並無顯著影響,且感知易用性也未顯著影響感知實用性。第二階段通過訪談13位具有網路銀行使用經驗的用戶,進一步瞭解使用者對智慧型服務的看法及影響轉換意圖的因素,並探索感知彈性不影響感知易用性且感知易用性未顯著影響感知實用性的原因。訪談結果揭示,影響用戶感知彈性的主要因素是問題解決的立即性,而即使能即時解決需求和問題,用戶並不會因此認為該智慧型服務更簡單易用。此外,操作方便的智慧型服務並不會讓用戶覺得它更加實用,因為影響感知實用性之因素主要為方便性、協助理財功能、手續費/匯率之優惠。
本研究的學術貢獻在於結合多種理論框架,提供新的見解和證據,幫助理解智慧型服務的使用者轉換行為。實務上,建議企業在設計和推廣智慧型服務時,應注重提升服務的彈性,包括感知彈性、相容性及建立信任,以促進使用者的轉換意圖,從而提升市場競爭力。
摘要(英) In an era where smart services are becoming increasingly prevalent, understanding the factors influencing user Switching Intentions is crucial for both businesses and academia. This study, based on the Technology Acceptance Model (TAM) and the Theory of Reasoned Action (TRA), investigates how perceived flexibility, compatibility, and perceived trust affect the Switching Intentions of smart service users, with a focus on online banking as the primary experiment.
The study was conducted in two phases. In the first phase, data was collected through a questionnaire survey, resulting in 271 valid samples. The data was later analyzed using SPSS 23 and SmartPLS 4.1.0.1. The results indicated that compatibility, perceived flexibility, perceived ease of use, perceived usefulness, and perceived trust all have significant impacts on Switching Intentions. These factors effectively increase user acceptance and willingness to use smart services. However, perceived flexibility does not significantly affect perceived ease of use, and perceived ease of use unexpectedly does not affect perceived usefulness.
In the second phase, interviews were conducted with 13 users who have experience with online banking to gain a deeper understanding of their perceptions of smart services and the factors influencing their Switching Intentions. This phase also aimed to explore the reasons why perceived flexibility does not affect perceived ease of use, and why perceived ease of use does not significantly impact perceived usefulness. The interview results revealed that the main factor influencing users′ perception of flexibility is the immediacy of problem resolution. Even if their needs and problems are resolved promptly, users do not necessarily find the smart service easier to use. Furthermore, easy-to-use smart services do not make users perceive them as more useful. The factors that primarily influence perceived usefulness are convenience, financial management assistance functions, and favorable fees/exchange rates.
The academic contribution of this study lies in integrating multiple theoretical frameworks to provide new insights and evidence, helping to understand user switching behavior in smart services. Practically, the study suggests that companies should focus on enhancing service flexibility, including perceived flexibility, compatibility, and building trust when designing and promoting smart services, to facilitate user Switching Intentions and improve market competitiveness.
關鍵字(中) ★ 信任
★ 轉換意圖
★ 科技接受模型
★ 慎思行動理論
★ 感知彈性
★ 相容性
關鍵字(英) ★ Switching Intentions
★ Technology Acceptance Model
★ Theory of Reasoned Action
★ perceived flexibility
★ compatibility
★ perceived trust
論文目次 摘要 i
誌謝 iv
表目錄 vii
圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的與方法 4
第二章 文獻探討 5
2-1 科技接受理論 5
2-2 慎思行動理論 10
2-3 外部變數 13
2-4 網路銀行 15
第三章 研究方法 18
3-1 理論模型 18
3-2 研究推論及假說 19
3-3 研究情境 25
3-4 問卷設計及訪談設計 26
3-5 前測 29
3-6 統計方法 30
第四章 研究結果與分析 31
4-1 問卷發放與回收 31
4-2 敘述性統計Descriptive Statistics 31
4-3 信效度分析 36
4-4 假說檢定 39
第五章 結論與建議 59
5-1 研究結論 59
5-2 線上訪談結論 63
5-3 研究貢獻 66
5-4 研究限制與未來建議 69
參考文獻 71
附錄一、網路銀行使用意向調查問卷 82
參考文獻 中文文獻
[1] 中華民國銀行商業同業公會全過聯合會,銀行受理客戶以網路方式開立數位存款帳戶作業範本,中華民國銀行商業同業公會全過聯合會,台北,2024。
[2] 金融監督管理委員會:數位存款帳戶開戶統計。2024年05月21日,取自https://www.banking.gov.tw/ch/home.jsp?id=591&parentpath=0,590&mcustomize=multimessage_view.jsp&dataserno=201911270001&dtable=Disclosure
[3] 模型寶庫:科技接受模型(Technology Acceptance Model)在社會領域中學術應用。2019年3月31日,取自https://bigdatamodel.blogspot.com/2019/03/technology-acceptance-model.html
[4] 模型寶庫:理性行為理論(Theory of Reasoned Action)在社會領域中學術應用。2019年3月16日,取自https://bigdatamodel.blogspot.com/2019/03/theory-of-reasoned-action.html
英文文獻
[1] Abroud, A., Choong, Y. V., Muthaiyah, S., & Fie, D. Y. G. (2015). Adopting e-finance: decomposing the technology acceptance model for investors. Service Business, 9, 161-182.
[2] Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
[3] Al Tarawneh, M. m. A., Nguyen, T. P. L., Yong, D. G. F., & Dorasamy, M. A. P. (2023). Determinant of m-banking usage and adoption among millennials. Sustainability, 15(10), 8216.
[4] Almarzouqi, A., Aburayya, A., & Salloum, S. A. (2022). Determinants of intention to use medical smartwatch-based dual-stage SEM-ANN analysis. Informatics in Medicine Unlocked, 28, 100859.
[5] Cigdem Altin Gumussoy, C., Kaya, A., & Ozlu, E. (2018). Determinants of mobile banking use: an extended TAM with perceived risk, mobility access, compatibility, perceived self-efficacy and subjective norms. Industrial Engineering in the Industry 4.0 Era: Selected Papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2017, July 20–21, Vienna, Austria,
[6] Bahl, S. (2012). E-banking: Challenges & policy implications. International Journal of Computing & Business Research, 5(3), 84-101.
[7] Baklouti, F., & Boukamcha, F. (2023). Consumer resistance to internet banking services: implications for the innovation resistance theory. Journal of Financial Services Marketing, 1-13.
[8] Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
[9] Bhattacherjee, A., Limayem, M., & Cheung, C. M. (2012). User switching of information technology: A theoretical synthesis and empirical test. Information & Management, 49(7-8), 327-333.
[10] Blackwell, G., Gordon, B., Peña-López, I., Scott, R., Baker, A., Cooper, J., Rahimi, B., Vimarlund, V., Timpka, T., & Hackl, W. (2018). A systematic review of the technology acceptance model in health informatics. Applied clinical informatics, 9(03), 604-634.
[11] Bozic, B. (2017). Consumer trust repair: A critical literature review. European Management Journal, 35(4), 538-547.
[12] Briz-Ponce, L., & García-Peñalvo, F. J. (2015). An empirical assessment of a technology acceptance model for apps in medical education. Journal of medical systems, 39, 1-5.
[13] Carrera, A., Zoccarato, F., Mazzeo, M., Lettieri, E., Toletti, G., Bertoli, S., Castelnuovo, G., & Fresa, E. (2023). What drives patients’ acceptance of Digital Therapeutics? Establishing a new framework to measure the interplay between rational and institutional factors. BMC Health Services Research, 23(1), 145.
[14] Chai, L., & Pavlou, P. (2002). What drives electronic commerce across cultures? A cross-cultural empirical investigation of the theory of planned behavior. Journal of Electronic Commerce Research, 3(4), 240-253.
[15] Chang, C.-C., & Chang, P.-C. (2010). A study on Taiwan consumers’ adoption of online financial services.
[16] Chang, C.-T., Hajiyev, J., & Su, C.-R. (2017). Examining the students’ behavioral intention to use e-learning in Azerbaijan? The general extended technology acceptance model for e-learning approach. Computers & Education, 111, 128-143.
[17] Chang, H. H., & Hamid, M. R. B. A. (2010). An empirical investigation of internet banking in Taiwan. Global Journal of Business Research, 4(2), 39-47.
[18] Chang, I. C., Liu, C. C., & Chen, K. (2014). The push, pull and mooring effects in virtual migration for social networking sites. Information Systems Journal, 24(4), 323-346.
[19] Chau, P. Y., & Hu, P. J. (2002). Examining a model of information technology acceptance by individual professionals: An exploratory study. Journal of management information systems, 18(4), 191-229.
[20] Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision sciences, 32(4), 699-719.
[21] Chen, J.-L. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computers & Education, 57(2), 1501-1511.
[22] Cheng, T. E., Lam, D. Y., & Yeung, A. C. (2006). Adoption of internet banking: an empirical study in Hong Kong. Decision support systems, 42(3), 1558-1572.
[23] Cobelli, N., Gill, L., Cassia, F., & Ugolini, M. (2014). Factors that influence intent to adopt a hearing aid among older people in I taly. Health & social care in the community, 22(6), 612-622.
[24] Cruz, P., Barretto Filgueiras Neto, L., Muñoz‐Gallego, P., & Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of bank marketing, 28(5), 342-371.
[25] Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205-219.
[26] DeYoung, R. (2001). The financial performance of pure play Internet banks. Economic Perspectives-Federal Reserve Bank of Chicago, 25(1), 60-73.
[27] Dhagarra, D., Goswami, M., & Kumar, G. (2020). Impact of trust and privacy concerns on technology acceptance in healthcare: an Indian perspective. International journal of medical informatics, 141, 104164.
[28] Ebardo, R., & Suarez, M. T. (2023). Do cognitive, affective and social needs influence mobile learning adoption in emergency remote teaching? Research and Practice in Technology Enhanced Learning, 18, 014-014.
[29] Edo, O. C., Ang, D., Etu, E.-E., Tenebe, I., Edo, S., & Diekola, O. A. (2023). Why do healthcare workers adopt digital health technologies-A cross-sectional study integrating the TAM and UTAUT model in a developing economy. International Journal of Information Management Data Insights, 3(2), 100186.
[30] Faber, S., van Geenhuizen, M., & de Reuver, M. (2017). eHealth adoption factors in medical hospitals: a focus on the Netherlands. International journal of medical informatics, 100, 77-89.
[31] Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
[32] Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
[33] Gagnon, M.-P., Simonyan, D., Godin, G., Labrecque, M., Ouimet, M., & Rousseau, M. (2016). Factors influencing electronic health record adoption by physicians: A multilevel analysis. International Journal of Information Management, 36(3), 258-270.
[34] Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737.
[35] Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & management, 39(8), 705-719.
[36] Guenther, P., Guenther, M., Ringle, C. M., Zaefarian, G., & Cartwright, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127-142.
[37] Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5, No. 3, pp. 207-219). In: Upper Saddle River, NJ: Prentice hall.
[38] Hale, J. L., Householder, B. J., & Greene, K. L. (2002). The theory of reasoned action. The persuasion handbook: Developments in theory and practice, 14(2002), 259-286.
[39] Hung, S.-Y., Tsai, J. C.-A., & Chuang, C.-C. (2014). Investigating primary health care nurses′ intention to use information technology: An empirical study in Taiwan. Decision Support Systems, 57, 331-342.
[40] Idoga, P. E., Toycan, M., Nadiri, H., & Çelebi, E. (2018). Factors affecting the successful adoption of e-health cloud based health system from healthcare consumers’ perspective. IEEE Access, 6, 71216-71228.
[41] Irimia-Diéguez, A., Velicia-Martín, F., & Aguayo-Camacho, M. (2023). Predicting FinTech innovation adoption: the mediator role of social norms and attitudes. Financial Innovation, 9(1), 36.
[42] Jeyaraj, A., Dwivedi, Y. K., & Venkatesh, V. (2023). Intention in information systems adoption and use: Current state and research directions. In (Vol. 73, pp. 102680): Elsevier.
[43] Kaabachi, S., Ben Mrad, S., & O’Leary, B. (2019). Consumer’s initial trust formation in IOB’s acceptance: The role of social influence and perceived compatibility. International Journal of bank marketing, 37(2), 507-530.
[44] Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212.
[45] Karahanna, E., Agarwal, R., & Angst, C. M. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS quarterly, 781-804.
[46] Karahoca, A., Karahoca, D., & Aksöz, M. (2018). Examining intention to adopt to internet of things in healthcare technology products. Kybernetes, 47(4), 742-770.
[47] Karjaluoto, H., Koivumaki, T., & Salo, J. (2003). Individual differences in private banking: Empirical evidence from Finland. 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the,
[48] Karkonasasi, K., Cheah, Y.-N., Vadiveloo, M., & Mousavi, S. A. (2023). Acceptance of a Text Messaging Vaccination Reminder and Recall System in Malaysia’s Healthcare Sector: Extending the Technology Acceptance Model. Vaccines, 11(8), 1331.
[49] Khan, I., Xitong, G., Ahmad, Z., & Shahzad, F. (2019). Investigating factors impelling the adoption of e-health: a perspective of African expats in China. Sage Open, 9(3), 2158244019865803.
[50] Khatun, F., Heywood, A. E., Ray, P. K., Hanifi, S., Bhuiya, A., & Liaw, S.-T. (2015). Determinants of readiness to adopt mHealth in a rural community of Bangladesh. International journal of medical informatics, 84(10), 847-856.
[51] Kim, D., & Ammeter, T. (2014). Predicting personal information system adoption using an integrated diffusion model. Information & Management, 51(4), 451-464.
[52] Kim, S. S., & Malhotra, N. K. (2005). Predicting system usage from intention and past use: scale issues in the predictors. Decision Sciences, 36(1), 187-196.
[53] Leong, Y. P., & Wang, Q. (2006). Effects of customer beliefs on relationship marketing tactics and customer attitude on switching intention in a competitive service industry. ACR Asia-Pacific Advances.
[54] López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & management, 45(6), 359-364.
[55] Luqman, A., Masood, A., & Ali, A. (2018). An SDT and TPB-based integrated approach to explore the role of autonomous and controlled motivations in “SNS discontinuance intention”. Computers in Human Behavior, 85, 298-307.
[56] Maditinos, D., Chatzoudes, D., & Sarigiannidis, L. (2013). An examination of the critical factors affecting consumer acceptance of online banking: A focus on the dimensions of risk. Journal of Systems and information Technology, 15(1), 97-116.
[57] Matsuo, M., Minami, C., & Matsuyama, T. (2018). Social influence on innovation resistance in internet banking services. Journal of Retailing and Consumer Services, 45, 42-51.
[58] McKechnie, S., Winklhofer, H., & Ennew, C. (2006). Applying the technology acceptance model to the online retailing of financial services. International Journal of Retail & Distribution Management, 34(4/5), 388-410.
[59] McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. The journal of strategic information systems, 11(3-4), 297-323.
[60] Melas, C. D., Zampetakis, L. A., Dimopoulou, A., & Moustakis, V. (2011). Modeling the acceptance of clinical information systems among hospital medical staff: an extended TAM model. Journal of biomedical informatics, 44(4), 553-564.
[61] Mobarak, A. M., Dakrory, M. I., Elsotouhy, M. M., Ghonim, M. A., & Khashan, M. A. (2024). Drivers of mobile payment services adoption: a behavioral reasoning theory perspective. International Journal of Human–Computer Interaction, 40(7), 1518-1531.
[62] Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
[63] Mortenson, M. J., & Vidgen, R. (2016). A computational literature review of the technology acceptance model. International Journal of Information Management, 36(6), 1248-1259.
[64] Msaed, C., Al-Kwifi, S. O., & Ahmed, Z. U. (2017). Building a comprehensive model to investigate factors behind switching intention of high-technology products. Journal of Product & Brand Management, 26(2), 102-119.
[65] Mutahar, A. M., Daud, N. M., Ramayah, T., Putit, L., & Isaac, O. (2017). Examining the effect of subjective norms and compatibility as external variables on TAM: mobile banking acceptance in Yemen. Science International, 29(4), 769-776.
[66] Nezamdoust, S., Abdekhoda, M., & Rahmani, A. (2022). Determinant factors in adopting mobile health application in healthcare by nurses. BMC Medical Informatics and Decision Making, 22(1), 47.
[67] Ng, Y. M. M. (2020). Re-examining the innovation post-adoption process: The case of Twitter discontinuance. Computers in Human Behavior, 103, 48-56.
[68] Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134.
[69] Peng, X., Zhao, Y. C., & Zhu, Q. (2016). Investigating user switching intention for mobile instant messaging application: Taking WeChat as an example. Computers in Human Behavior, 64, 206-216.
[70] Pennington, R., Wilcox, H. D., & Grover, V. (2003). The role of system trust in business-to-consumer transactions. Journal of management information systems, 20(3), 197-226.
[71] Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet research, 14(3), 224-235.
[72] Puspitasari, I., Wiambodo, A. N. R., & Soeparman, P. (2021). The impact of expectation confirmation, technology compatibility, and customer’s acceptance on e-wallet continuance intention. AIP conference proceedings,
[73] Putri, G. A., Widagdo, A. K., & Setiawan, D. (2023). Analysis of financial technology acceptance of peer to peer lending (P2P lending) using extended technology acceptance model (TAM). Journal of Open Innovation: Technology, Market, and Complexity, 9(1), 100027.
[74] Raut, R. K., Kumar, R., & Das, N. (2021). Individual investors’ intention towards SRI in India: an implementation of the theory of reasoned action. Social Responsibility Journal, 17(7), 877-896.
[75] Riquelme, H. E., & Rios, R. E. (2010). The moderating effect of gender in the adoption of mobile banking. International Journal of bank marketing, 28(5), 328-341.
[76] Rogers, E. M. (1995). Diffusion of Innovations: modifications of a model for telecommunications. Die diffusion von innovationen in der telekommunikation, 25-38.
[77] Sánchez, R. A., & Hueros, A. D. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in human behavior, 26(6), 1632-1640.
[78] Santos, A. A. d., & Ponchio, M. C. (2021). Functional, psychological and emotional barriers and the resistance to the use of digital banking services. Innovation & Management Review, 18(3), 331-348.
[79] Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
[80] Schnall, R., Higgins, T., Brown, W., Carballo-Dieguez, A., & Bakken, S. (2015). Trust, perceived risk, perceived ease of use and perceived usefulness as factors related to mHealth technology use. Studies in health technology and informatics, 216, 467.
[81] Schofield, J. W. (1975). Effect of norms, public disclosure, and need for approval on volunteering behavior consistent with attitudes. Journal of personality and Social Psychology, 31(6), 1126.
[82] Shaikh, I. M., Qureshi, M. A., Noordin, K., Shaikh, J. M., Khan, A., & Shahbaz, M. S. (2020). Acceptance of Islamic financial technology (FinTech) banking services by Malaysian users: an extension of technology acceptance model. foresight, 22(3), 367-383.
[83] Shen, Q., & Li, Y. (2010). Explore antecedent factors of switching costs and intentions and their impact on customer loyalty. The 13th Conference on Interdisciplinary and Multifunctional Business Management,
[84] Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European journal of marketing, 53(11), 2322-2347.
[85] Song, J. (2007). Trust in health infomediaries. Decision support systems, 43(2), 390-407.
[86] Sumiati, A., Widyastuti, U., & Takidah, E. (2021). The millennials generation′s intention to invest: A modified model of the theory of reasoned action. International journal of entrepreneurship, 25(3), 1-11.
[87] Tsai, C.-H. (2014). Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems. International journal of environmental research and public health, 11(5), 4905-4925.
[88] Tu, J.-C., Luo, S. C., Lee, Y.-L., Shih, M.-F., & Chiu, S.-P. (2022). Exploring usability and patient attitude towards a smart hospital service with the technology acceptance model. International Journal of Environmental Research and Public Health, 19(10), 6059.
[89] Venkatesh, V. (2006). Where to go from here? Thoughts on future directions for research on individual‐level technology adoption with a focus on decision making. Decision Sciences, 37(4), 497-518.
[90] Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451-481.
[91] Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
[92] Walczak, R., Kludacz-Alessandri, M., & Hawrysz, L. (2022). Use of telemedicine technology among general practitioners during COVID-19: A modified technology acceptance model study in Poland. International Journal of Environmental Research and Public Health, 19(17), 10937.
[93] Wang, Y.-Y., Wang, Y.-S., & Lin, T.-C. (2018). Developing and validating a technology upgrade model. International Journal of Information Management, 38(1), 7-26.
[94] Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: an empirical study. International journal of service industry management, 14(5), 501-519.
[95] Wu, J.-H., Shen, W.-S., Lin, L.-M., Greenes, R. A., & Bates, D. W. (2008). Testing the technology acceptance model for evaluating healthcare professionals′ intention to use an adverse event reporting system. International Journal for Quality in Health Care, 20(2), 123-129.
[96] Wu, L., & Chen, J.-L. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. International Journal of Human-Computer Studies, 62(6), 784-808.
[97] Yamin, M. A. Y., & Abdalatif, O. A. A. (2024). Examining consumer behavior towards adoption of quick response code mobile payment systems: transforming mobile payment in the fintech industry. Humanities and Social Sciences Communications, 11(1), 1-11.
[98] Yan, M., Zhang, M., Kwok, A. P. K., Zeng, H., & Li, Y. (2023). The Roles of Trust and Its Antecedent Variables in Healthcare Consumers’ Acceptance of Online Medical Consultation during the COVID-19 Pandemic in China. Healthcare,
[99] Yap, K. B., Wong, D. H., Loh, C., & Bak, R. (2010). Offline and online banking–where to draw the line when building trust in e‐banking? International Journal of Bank Marketing, 28(1), 27-46.
[100] Ye, C., & Potter, R. (2011). The role of habit in post-adoption switching of personal information technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1), 35.
[101] Yee‐Loong Chong, A., Ooi, K. B., Lin, B., & Tan, B. I. (2010). Online banking adoption: an empirical analysis. International Journal of bank marketing, 28(4), 267-287.
[102] Yu, P., Li, H., & Gagnon, M.-P. (2009). Health IT acceptance factors in long-term care facilities: a cross-sectional survey. International journal of medical informatics, 78(4), 219-229.
[103] Zhao, J., Fang, S., & Jin, P. (2018). Modeling and quantifying user acceptance of personalized business modes based on TAM, trust and attitude. Sustainability, 10(2), 356.
指導教授 許文錦 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明