博碩士論文 111453007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.15.21.215
姓名 王柔蘋(Jou-Ping Wang)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 探討特徵選取法應用於飛機油耗效能預測之研究
(Exploring Feature Selection Techniques for Predicting Aircraft Fuel Efficiency Performance)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 在本研究中探討了航空公司面對高燃油成本的挑戰及其在全球經濟中的關鍵角色, 如何透過精準的燃油管理和飛機性能監控來優化操作效率。引入預測性健康管理(PHM) 和飛機性能監控計劃(APM)觀念,並透過監測設備實時收集飛機性能數據並比較實際 性能與標準性能,識別性能差異,提供對飛機當前狀況的評估。 本文主要研究動機源於現有飛機性能監控計畫收集的大量數據,這些數據指出了飛機性 能的退化,但未能明確指出關鍵影響因素。透過資料探勘技術,我們旨在識別出影響飛 機性能衰退的關鍵特徵,從而提供更精確的維護建議和操作優化策略。
為達上述目的,本研究進行三個不同主題的對照實驗,飛機機齡、飛行航程長度和 季節,來探究其對飛機性能的影響。研究中採用過濾器、包裝器和內嵌法這三種特徵選 取模型進行比較,並搭配隨機森林回歸與支持向量回歸預測方法,來確定關鍵特徵和評 估模型表現。
研究結果展示了不同特徵選取方法與預測模型組合對改善航機燃油效率預測模型 的影響。本研究證實上述方法能減少模型的複雜性,同時維持或提升預測的精確度。高 維度的 APM 資料保持較高的預測精度,但使用較少的關鍵特徵同樣能夠達到接近完整 數據集的預測效果,降低資料處理的複雜度並提升分析效率。
本研究提供了一個全面的方法來分析和優化飛機性能,並有效識別出影響飛機性能 的關鍵特徵,旨在幫助航空公司更有效地管理燃油成本和提高運營效率,同時確保飛行 的安全性。
摘要(英) This study investigates the impact of high fuel costs on airlines and their significant role in the global economy, focusing on enhancing operational efficiency through precise fuel management and aircraft performance monitoring. We introduce Predictive Health Management (PHM) and Aircraft Performance Monitoring (APM), utilizing real-time monitoring tools to gather data and identify discrepancies by comparing actual aircraft performance against benchmarks.
Motivated by the extensive data from aircraft performance monitoring, which highlights performance degradation without clarifying the causes, we employ data mining techniques to pinpoint key factors affecting aircraft performance. This enables more precise maintenance recommendations and optimization of operations.
Our research involves controlled experiments related to aircraft age, flight distance, and seasonality to assess their effects on performance. We analyze the efficacy of three feature selection models—filter, wrapper, and embedded methods—combined with Random Forest and Support Vector Regression to identify critical performance features.
The research results show that these methods reduce model complexity while maintaining or enhancing accuracy. High-dimensional APM data provides high prediction accuracy, but using fewer key features achieves similar results, reducing data processing complexity and improving analysis efficiency.
This study aims to help airlines manage fuel costs effectively and enhance operational efficiency while prioritizing safety, providing a thorough approach to aircraft performance optimization.
關鍵字(中) ★ 特徵選取
★ 回歸預測
★ 飛機性能監控
★ 引擎衰退
關鍵字(英) ★ Feature Selection
★ Regression Prediction
★ Aircraft Performance Monitoring
★ Engine Degradation
論文目次 中文摘要……………………………………………………………………………..……………….………………………………………i
Abstract…………………………………………………………………………………………………………………………………...…ii
目錄……………………………………………………………………………………………………………………...………..…….…….iii
表目錄……………………………………………………………………………………………………………………...………..…….….v
圖目錄………………………………………………………………………………………………………………………………………..vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 4
第二章 文獻探討 5
2.1 飛機性能監控 5
2.2 飛機性能監控計劃(APM) 6
2.2.1 APM介紹 6
2.2.2 數據搜集 6
2.2.3 計算邏輯 6
2.2.4 分析利用 8
2.2.5 相關文獻回顧 8
2.3 特徵選取 12
2.4 預測模型 15
第三章 研究方法 18
3.1 研究流程 18
3.2 實驗環境 20
3.3 資料集 21
3.4 資料前處理 33
3.5 特徵選取 35
3.6 預測模型 36
3.7 實驗設計與評估標準 37
第四章 實驗結果 41
4.1 各實驗分析 41
4.2 綜合討論 54
第五章 結論 57
5.1 研究的重要性及貢獻 57
5.2 研究限制 58
5.3 未來研究 58
參 考 文 獻 60
參考文獻 1. Ai, C. (2022). A Method for Cancer Genomics Feature Selection Based on LASSO-RFE [Article]. Iranian Journal of Science and Technology Transaction a-Science, 46(3), 731-738. https://doi.org/10.1007/s40995- 022-01292-8
2. Airbus. (2002). Getting to Grips with Aircraft Performance Monitoring.
3. Boeing. (2018). Airplane Performance Monitoring Software User Manual.
4. Breiman, L. (2001). Random forests [Article]. Machine Learning, 45(1), 5-32.
https://doi.org/10.1023/a:1010933404324
5. Buckley, T., Ghosh, B., & Pakrashi, V. (2023). A Feature Extraction & Selection Benchmark for Structural Health Monitoring [Article; Early Access]. Structural Health Monitoring-an International Journal, 22(3), 2082-2127. https://doi.org/10.1177/14759217221111141
6. Cao, B., Li, C. H., Song, Y. F., Qin, Y. Y., & Chen, C. (2022). Network Intrusion Detection Model Based
on CNN and GRU [Article]. Applied Sciences-Basel, 12(9), 27, Article 4184. https://doi.org/10.3390/app12094184
7. Chen, C., Lu, N. Y., Jiang, B., & Wang, C. S. (2021). A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance [Article]. Ieee-Caa Journal of Automatica Sinica, 8(2), 412-422. https://doi.org/10.1109/jas.2021.1003835
8. Chen, X., Jin, G., Qiu, S., Lu, M., & Yu, D. (2020, 16-18 Oct. 2020). Direct Remaining Useful Life Estimation Based on Random Forest Regression. 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai),
9. Chen, Y., Ma, L., Yu, D., Zhang, H., Feng, K., Wang, X., & Song, J. (2022). Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, 135, 108545. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108545
10. De Giorgi, M. G., Menga, N., & Ficarella, A. (2023). Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies. Energies, 16(6), 2711. https://www.mdpi.com/1996-1073/16/6/2711
11. Faisal, H. M., Javaid, N., Sarfraz, B., Baqi, A., Bilal, M., Haider, I., & Shuja, S. M. (2019). Prediction of Building Energy Consumption Using Enhance Convolutional Neural Network. AINA Workshops,
12. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 46, 389-422. https://doi.org/10.1023/A:1012487302797
13. Hamada, M., Tanimu, J. J., Hassan, M., Kakudi, H. A., & Robert, P. (2021, 20-23 Dec. 2021). Evaluation of Recursive Feature Elimination and LASSO Regularization-based optimized feature selection approaches for cervical cancer prediction. 2021 IEEE 14th International Symposium on Embedded Multicore/Many- core Systems-on-Chip (MCSoC),
66
14. Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063. https://doi.org/https://doi.org/10.1016/j.ress.2021.108063
15. Jović, A., Brkić, K., & Bogunović, N. (2015, 25-29 May 2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
16. Kang, Z. Q., Catal, C., & Tekinerdogan, B. (2021). Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks [Article]. Sensors, 21(3), 20, Article 932. https://doi.org/10.3390/s21030932
17. Kannangara, K., Zhou, W. H., Ding, Z., & Hong, Z. H. (2022). Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method [Article]. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1052-1063. https://doi.org/10.1016/j.jrmge.2022.01.002
18. Khumprom, P., Yodo, N., & Grewell, D. (2020, 27-30 Jan. 2020). Neural Networks Based Feature Selection Approaches for Prognostics of Aircraft Engines. 2020 Annual Reliability and Maintainability Symposium (RAMS),
19. Krajček Nikolić, K., Nikolić, D., & Domitrovic, A. (2015). Aircraft performance monitoring from flight data. Tehnicki Vjesnik, 22. https://doi.org/10.17559/TV-20131220145918
20. Li, G. (2020). A Pearson Based Feature Compressing Model for SNARE Protein Classification. IEEE Access, 8, 136560-136569. https://doi.org/10.1109/ACCESS.2020.3010944
21. Li, J. D., Cheng, K. W., Wang, S. H., Morstatter, F., Trevino, R. P., Tang, J. L., & Liu, H. (2018). Feature Selection: A Data Perspective [Article]. Acm Computing Surveys, 50(6), 45, Article 94. https://doi.org/10.1145/3136625
22. Liu, Y., Shi, H., Huang, S., Chen, X., Zhou, H., Chang, H., Xia, Y., Wang, G., & Yang, X. (2019). Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quantitative Imaging in Medicine and Surgery, 9(7), 1288-1302. https://qims.amegroups.org/article/view/27545
23. Lu, S. S., Koopialipoor, M., Asteris, P. G., Bahri, M., & Armaghani, D. J. (2020). A Novel Feature Selection Approach Based on Tree Models for Evaluating the Punching Shear Capacity of Steel Fiber-Reinforced Concrete Flat Slabs [Article]. Materials, 13(17), 20, Article 3902. https://doi.org/10.3390/ma13173902
24. Luo, M., Wang, Y. F., Xie, Y. H., Zhou, L., Qiao, J. J., Qiu, S. Y., & Sun, Y. J. (2021). Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass [Article]. Forests, 12(2), 21, Article 216. https://doi.org/10.3390/f12020216
25. Michael, G. P., & Myeongsu, K. (2019). The Role of PHM at Commercial Airlines. In Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things (pp. 503- 534). IEEE. https://doi.org/10.1002/9781119515326.ch18
26. Ordóñez, C., Lasheras, F. S., Roca-Pardiñas, J., & Juez, F. J. D. (2019). A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines [Article]. Journal of Computational and Applied Mathematics, 346, 184-191. https://doi.org/10.1016/j.cam.2018.07.008
67

27. Rahbari, A., Rébillat, M., Mechbal, N., & Canu, S. (2021). Unsupervised damage clustering in complex aeronautical composite structures monitored by Lamb waves: An inductive approach [Article]. Engineering Applications of Artificial Intelligence, 97, 17, Article 104099. https://doi.org/10.1016/j.engappai.2020.104099
28. Rajković, D., Marjanović Jeromela, A., Pezo, L., Lončar, B., Zanetti, F., Monti, A., & Kondić Špika, A. (2022). Yield and Quality Prediction of Winter Rapeseed—Artificial Neural Network and Random Forest Models. Agronomy, 12(1).
29. Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski, C. A. M., Myers, D. B., Nafziger, E. D., Sawyer, J. E., & Shanahan, J. F. (2019). Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 164, 104872. https://doi.org/https://doi.org/10.1016/j.compag.2019.104872
30. Ren, L. K., Qin, H. Q., Xie, Z. B., Li, B. J., & Xu, K. J. (2022). Aero-Engine Remaining Useful Life Estimation Based on Multi-Head Networks [Article]. Ieee Transactions on Instrumentation and Measurement, 71, 10, Article 3505810. https://doi.org/10.1109/tim.2022.3149094
31. Rose, S., Nickolas, S., & Sangeetha, S. (2021). A recursive ensemble-based feature selection for multi- output models to discover patterns among the soil nutrients. Chemometrics and Intelligent Laboratory Systems, 208, 104221. https://doi.org/https://doi.org/10.1016/j.chemolab.2020.104221
32. Shahhosseini, M., Martinez-Feria, R., Hu, G., & Archontoulis, S. (2019). Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14. https://doi.org/10.1088/1748-9326/ab5268
33. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso [Article]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 58(1), 267-288. https://doi.org/10.1111/j.2517- 6161.1996.tb02080.x
34. Tsai, C.-F., & Sung, Y.-T. (2020). Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowledge-Based Systems, 203, 106097. https://doi.org/https://doi.org/10.1016/j.knosys.2020.106097
35. Viale, L., Daga, A. P., Fasana, A., & Garibaldi, L. (2023). Least squares smoothed k-nearest neighbors online prediction of the remaining useful life of a NASA turbofan. Mechanical Systems and Signal Processing, 190, 110154. https://doi.org/https://doi.org/10.1016/j.ymssp.2023.110154
36. Vollert, S., & Theissler, A. (2021, 7-10 Sept. 2021). Challenges of machine learning-based RUL prognosis: A review on NASA′s C-MAPSS data set. 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ),
37. Wang, C., Lu, N., Cheng, Y., & Jiang, B. (2021). A Data-Driven Aero-Engine Degradation Prognostic Strategy. IEEE Transactions on Cybernetics, 51(3), 1531-1541. https://doi.org/10.1109/TCYB.2019.2938244
68

38. Wang, H., Li, D., Li, D., Liu, C., Yang, X., & Zhu, G. (2023). Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-Layer Perceptron. Applied Sciences, 13(12).
39. Yuan, Z., Liu, J., Liu, Y., Yuan, Y., Zhang, Q., & Li, Z. (2020). Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors. IEEE Access, 8, 187441-187454. https://doi.org/10.1109/ACCESS.2020.3030614
40. Zhou, X., Lu, F., & Huang, J. Q. (2019). Fault diagnosis based on measurement reconstruction of HPT exit pressure for turbofan engine [Article]. Chinese Journal of Aeronautics, 32(5), 1156-1170. https://doi.org/10.1016/j.cja.2019.03.032
41. Zio, E. (2022). Prognostics and Health Management (PHM): Where are we and where do we (need to) go
in theory and practice. Reliability Engineering & System Safety, 218, 108119. https://doi.org/https://doi.org/10.1016/j.ress.2021.108119
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明