博碩士論文 111423001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.190.217.122
姓名 翁賢灝(Weng)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 考量飯店星級和評論者貢獻之 交互作用於評論不可靠性研究: 機器學習與深度學習建模效能評估
(Considering the Interaction between Hotel Star Rating and Reviewer Contributions in the Study of Review Unreliability: An Evaluation of Machine Learning and Deep Learning Model Performance)
相關論文
★ 技術商品銷售之技術人員關鍵職能探討★ 資訊委外之承包商能力、信任及溝通與委外成效關係之個案研究
★ 兵工技術軍官職能需求分析-以某軍事工廠為例★ 不同楷模學習模式對VB程式語言學習之影響
★ 影響採購「網路資料中心產品」因素之探討★ 資訊人員績效評估之研究—以陸軍某資訊單位為例
★ 高職資料處理科學生網路成癮相關因素及其影響之探討★ 資訊服務委外對資訊部門及人員之衝擊-某大型外商公司之個案研究
★ 二次導入ERP系統之研究-以某個案公司為例★ 資料倉儲於證券產業應用之個案研究
★ 影響消費者採用創新數位產品之因素---以整合式手機為例★ 企業合併下資訊系統整合過程之個案研究
★ 資料倉儲系統建置之個案研究★ 電子表單系統導入之探討 - 以 A 公司為例
★ 企業資訊安全機制導入與評估–以H公司為例★ 從人力網站探討國內資訊人力現況–以104銀行資料為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 隨著Web2.0的普及,線上評論已成為消費者購買決策的重要依據。本研究針對旅宿業線上評論文本與評分不一致的現象進行探討,此問題可能對消費者選擇、業者和第三方平台信譽產生負面影響。文獻回顧顯示飯店星級(HSC)和評論者貢獻度(RC)可能存在交互作用,即評論評分並非受到單一因素影響,而是二個變數共同作用的非簡單線性關係。研究使用網頁爬蟲從 TripAdvisor 收集飯店評論,並通過比較不同詞嵌入方法和迴歸模型來探討在交互作用下找出解決評論不可靠之最有效的模型組合。
研究結果顯示,評論者貢獻度和飯店星級之間的交互作用對於評論評分有顯著影響,尤其在城市旅遊類型的資料集中。這種交互作用顯示不同星級的飯店對評論者期望和評價標準的影響不同,導致評分差異。在實驗一中,比較不同詞嵌入方法,Longformer 在處理長文本評論的特徵提取上表現優越,證明了基於 Transformer 的模型在處理評論文本方面的優勢。實驗二中的結果顯示,比較一系列迴歸模型後,Longformer-LSTM 最能夠有效預測評論評分。
綜合上述,本研究在理論上提供了新方法 Longformer-LSTM,用於解決飯店評論的不可靠問題,在實務上提供業者改善評論系統的策略,特別是較為依賴客戶評論來吸引新顧客的旅遊業者,可透過提高評論的可靠性,提升消費者信任度,間接影響其購買決策。
摘要(英) With the proliferation of Web 2.0, online reviews have become a crucial part of consumer purchasing decisions. This study investigates the issue of inconsistency between the text and ratings of online reviews in the hospitality industry, a problem that can negatively affect consumer choices, business reputations, and the credibility of third-party platforms. A literature review indicates that the interaction between hotel star classification (HSC) and reviewer contributions (RC) may affect the ratings, suggesting that the influence on ratings is not simply due to one factor but a complex interaction between these variables. The study collected hotel reviews from TripAdvisor using a web scraping system and compared different word embedding methods and regression models to identify the most effective combination for addressing the unreliability of reviews under the influence of these interactions.

The results show that the interaction between RC and HSC significantly impacts ratings, especially in the datasets related to city tourism. This interaction demonstrates that different levels of hotel stars may influence reviewers′ expectations and standards differently, leading to variations in ratings. In Experiment One, Longformer excelled in feature extraction for long text reviews, proving the superiority of Transformer-based models in processing review texts. Experiment Two′s findings indicate that the Longformer-LSTM combination is the most effective at predicting review ratings after comparing a series of regression models.

In summary, this study provides a novel Longformer-LSTM method theoretically for addressing the unreliability of hotel reviews and offers practical strategies for businesses to improve their review systems. This is particularly beneficial for tourism operators who rely heavily on customer reviews to attract new clients. By enhancing the reliability of reviews, businesses can significantly increase consumer trust, indirectly influencing their purchasing decisions.
關鍵字(中) ★ 旅宿評論
★ 交互作用
★ 不可靠評論
★ 預訓練模型
★ 機器學習
★ 深度學習
關鍵字(英) ★ Hotel Reviews
★ Interaction
★ Review Unreliability
★ Pre-trained Models
★ Machine Learning
★ Deep Learning
論文目次 摘要 ii
Abstract iii
誌謝 v
目錄 vi
圖目錄 vii
表目錄 viii
一、緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 4
二、文獻探討 5
2-1 線上評論重要性與不可靠問題 5
2-2 預測評論評分 9
2-2-1 機器學習 9
2-2-2 深度學習 10
2-3 線上評論的交互作用 11
三、研究方法 13
3-1 資料來源及前處理 14
3-2 特徵提取 16
3-3 預測模型 19
3-4 模型評估指標 22
四、實驗結果與分析 24
4-1 實驗設計 25
4-1-1 變數間交互作用 27
4-1-2 實驗一 31
4-1-3 實驗二 31
4-2 實驗結果 32
4-2-1 實驗一 32
4-2-2 實驗二 35
五、研究結論 40
附錄 52
參考文獻 Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment Analysis Using Deep Learning Techniques: A Review. International Journal of Advanced Computer Science and Applications (IJACSA), 8(6), Article 6. https://doi.org/10.14569/IJACSA.2017.080657
Antonio, N., de Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018a). Hotel online reviews: Creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management, 30(12), 3574–3591. https://doi.org/10.1108/IJCHM-05-2017-0302
Antonio, N., de Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018b). Hotel online reviews: Creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management, 30(12), 3574–3591. https://doi.org/10.1108/IJCHM-05-2017-0302
Asghar, N. (2016). Yelp Dataset Challenge: Review Rating Prediction (arXiv:1605.05362). arXiv. https://doi.org/10.48550/arXiv.1605.05362
Balakrishnan, V., Shi, Z., Law, C. L., Lim, R., Teh, L. L., & Fan, Y. (2022). A deep learning approach in predicting products’ sentiment ratings: A comparative analysis. The Journal of Supercomputing, 78(5), 7206–7226. https://doi.org/10.1007/s11227-021-04169-6
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer (arXiv:2004.05150). arXiv. https://doi.org/10.48550/arXiv.2004.05150
Centeno, R., Hermoso, R., & Fasli, M. (2015). On the inaccuracy of numerical ratings: Dealing with biased opinions in social networks. Information Systems Frontiers, 17(4), 809–825. https://doi.org/10.1007/s10796-014-9526-1
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Chiedu, J. (2022, December 23). Start Your 2023 Domestic Travel From These Most Visited Cities In The US. TheTravel. https://www.thetravel.com/most-visited-cities-in-the-us/
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805
Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the Stars: Improving Rating Predictions using Review Text Content.
Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the quality of predictions using textual information in online user reviews. Information Systems, 38(1), 1–15. https://doi.org/10.1016/j.is.2012.03.001
Gavilan, D., Avello, M., & Martinez-Navarro, G. (2018). The influence of online ratings and reviews on hotel booking consideration. Tourism Management, 66, 53–61. https://doi.org/10.1016/j.tourman.2017.10.018
Gaye, B., & Wulamu, A. (2019). Sentimental Analysis for Online Reviews using Machine learning Algorithms. International Research Journal of Engineering and Technology (IRJET), 06(08).
Hassan, J., & Shoaib, U. (2020). Multi-class Review Rating Classification using Deep Recurrent Neural Network. Neural Processing Letters, 51(1), 1031–1048. https://doi.org/10.1007/s11063-019-10125-6
Hlee, S. (2020). How reviewer level affects review helpfulness and reviewing behavior across hotel classifications: The case of Seoul in Korea. Industrial Management & Data Systems, 121(6), 1191–1215. https://doi.org/10.1108/IMDS-03-2020-0150
Hlee, S., Lee, H., Koo, C., & Chung, N. (2021). Will the relevance of review language and destination attractions be helpful? A data-driven approach. Journal of Vacation Marketing, 27(1), 61–81. https://doi.org/10.1177/1356766720950356
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42–53. https://doi.org/10.1016/j.dss.2013.07.009
Hu, X., & Yang, Y. (2021). What makes online reviews helpful in tourism and hospitality? A bare-bones meta-analysis. Journal of Hospitality Marketing & Management, 30(2), 139–158. https://doi.org/10.1080/19368623.2020.1780178
Hu, Y.-H., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6, Part A), 929–944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003
Hutto, C., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), Article 1. https://doi.org/10.1609/icwsm.v8i1.14550
Islam, M. R. (2014). Numeric rating of Apps on Google Play Store by sentiment analysis on user reviews. 2014 International Conference on Electrical Engineering and Information & Communication Technology, 1–4. https://doi.org/10.1109/ICEEICT.2014.6919058
Ismagilova, E., Slade, E. L., Rana, N. P., & Dwivedi, Y. K. (2020). The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis. Information Systems Frontiers, 22(5), 1203–1226. https://doi.org/10.1007/s10796-019-09924-y
Jones, K. (1972). A STATISTICAL INTERPRETATION OF TERM SPECIFICITY AND ITS APPLICATION IN RETRIEVAL. Journal of Documentation, 28(1), 11–21. https://doi.org/10.1108/eb026526
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification (arXiv:1408.5882). arXiv. https://doi.org/10.48550/arXiv.1408.5882
Koutoulas, D., & Vagena, A. (2023). The present and future of hotel star ratings through the eyes of star rating operators. Journal of Tourism Futures, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JTF-04-2022-0120
Lai, X., Wang, F., & Wang, X. (2021). Asymmetric relationship between customer sentiment and online hotel ratings: The moderating effects of review characteristics. International Journal of Contemporary Hospitality Management, 33(6), 2137–2156. https://doi.org/10.1108/IJCHM-07-2020-0708
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents (arXiv:1405.4053). arXiv. https://doi.org/10.48550/arXiv.1405.4053
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539
Lee, M., Kwon, W., & Back, K.-J. (2021). Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117–2136. https://doi.org/10.1108/IJCHM-06-2020-0587
Lei, X., & Qian, X. (2015). Rating prediction via exploring service reputation. 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), 1–6. https://doi.org/10.1109/MMSP.2015.7340814
Leposa A. (2019, February 27). Stats: Travel Industry Second-Fastest Growing Sector in the World. Travel Agent Central. https://www.travelagentcentral.com/running-your-business/stats-travel-industry-second-fastest-growing-sector-world
Li, H. (2018). Deep learning for natural language processing: Advantages and challenges. National Science Review, 5(1), 24–26. https://doi.org/10.1093/nsr/nwx110
Lo, A. S., & Yao, S. S. (2019). What makes hotel online reviews credible? An investigation of the roles of reviewer expertise, review rating consistency and review valence. International Journal of Contemporary Hospitality Management, 31(1), 41–60. https://doi.org/10.1108/IJCHM-10-2017-0671
Luca, M. (2016). Reviews, Reputation, and Revenue: The Case of Yelp.Com (SSRN Scholarly Paper 1928601). https://doi.org/10.2139/ssrn.1928601
Luo, Y., & Xu, X. (2021). Comparative study of deep learning models for analyzing online restaurant reviews in the era of the COVID-19 pandemic. International Journal of Hospitality Management, 94, 102849. https://doi.org/10.1016/j.ijhm.2020.102849
Ma, Y., Xiang, Z., Du, Q., & Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120–131. https://doi.org/10.1016/j.ijhm.2017.12.008
Mauri, A. G., & Minazzi, R. (2013). Web reviews influence on expectations and purchasing intentions of hotel potential customers. International Journal of Hospitality Management, 34, 99–107. https://doi.org/10.1016/j.ijhm.2013.02.012
Mudambi, S. M., Schuff, D., & Zhang, Z. (2014). Why Aren’t the Stars Aligned? An Analysis of Online Review Content and Star Ratings. 2014 47th Hawaii International Conference on System Sciences, 3139–3147. https://doi.org/10.1109/HICSS.2014.389
Pandey, R., & Singh, J. P. (2023). BERT-LSTM model for sarcasm detection in code-mixed social media post. Journal of Intelligent Information Systems, 60(1), 235–254. https://doi.org/10.1007/s10844-022-00755-z
Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532–1543). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162
Prameswari, P., Zulkarnain, Surjandari, I., & Laoh, E. (2017). Mining online reviews in Indonesia’s priority tourist destinations using sentiment analysis and text summarization approach. 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), 121–126. https://doi.org/10.1109/ICAwST.2017.8256429
Pramudya, Y. G., & Alamsyah, A. (2023). Hotel Reviews Classification and Review-based Recommendation Model Construction using BERT and RoBERTa. 2023 6th International Conference on Information and Communications Technology (ICOIACT), 437–442. https://doi.org/10.1109/ICOIACT59844.2023.10455890
Puh, K., & Bagić Babac, M. (2022). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078
Qiu, J., Liu, C., Li, Y., & Lin, Z. (2018). Leveraging sentiment analysis at the aspects level to predict ratings of reviews. Information Sciences, 451–452, 295–309. https://doi.org/10.1016/j.ins.2018.04.009
R. Abas, A., Elhenawy, I., Zidan, M., & Othman, M. (2022). BERT-CNN: A Deep Learning Model for Detecting Emotions from Text. Computers, Materials & Continua, 71(2), 2943–2961. https://doi.org/10.32604/cmc.2022.021671
Rai, N., Kumar, D., Kaushik, N., Raj, C., & Ali, A. (2022). Fake News Classification using transformer based enhanced LSTM and BERT. International Journal of Cognitive Computing in Engineering, 3, 98–105. https://doi.org/10.1016/j.ijcce.2022.03.003
Reimer, T., & Benkenstein, M. (2016). When good WOM hurts and bad WOM gains: The effect of untrustworthy online reviews. Journal of Business Research, 69(12), 5993–6001. https://doi.org/10.1016/j.jbusres.2016.05.014
Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Discrepancy detection between actual user reviews and numeric ratings of Google App store using deep learning. Expert Systems with Applications, 181, 115111. https://doi.org/10.1016/j.eswa.2021.115111
Sansonetti, G., Gasparetti, F., & Micarelli, A. (2023). A Machine Learning Approach to Prediction of Online Reviews Reliability. In A. Coman & S. Vasilache (Eds.), Social Computing and Social Media (pp. 131–145). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-35915-6_11
Schuckert, M., Liu, X., & Law, R. (2016). Insights into Suspicious Online Ratings: Direct Evidence from TripAdvisor. Asia Pacific Journal of Tourism Research, 21(3), 259–272. https://doi.org/10.1080/10941665.2015.1029954
Serra Cantallops, A., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 41–51. https://doi.org/10.1016/j.ijhm.2013.08.007
Shan G., Zhang D., Zhou L., Suo L., Lim J., & Shi C. (2018). Inconsistency Investigation between Online Review Content and Ratings. Twenty-fourth Americas Conference on Information Systems. https://par.nsf.gov/biblio/10095442-inconsistency-investigation-between-online-review-content-ratings
Sharpley, R. (2000). The influence of the accommodation sector on tourism development: Lessons from Cyprus. International Journal of Hospitality Management, 19(3), 275–293. https://doi.org/10.1016/S0278-4319(00)00021-9
Shen, R.-P., Liu, D., & Shen, H.-S. (2023). Detecting review manipulation from behavior deviation: A deep learning approach. Electronic Commerce Research and Applications, 60, 101283. https://doi.org/10.1016/j.elerap.2023.101283
Shin, S., Du, Q., Ma, Y., Fan, W., & Xiang, Z. (2021). Moderating effects of rating on text and helpfulness in online hotel reviews: An analytical approach. Journal of Hospitality Marketing & Management, 30(2), 159–177. https://doi.org/10.1080/19368623.2020.1778596
Subroto, A., & Christianis, M. (2021). Rating prediction of peer-to-peer accommodation through attributes and topics from customer review. Journal of Big Data, 8(1), 9. https://doi.org/10.1186/s40537-020-00395-6
Sun, H.-L., Liang, K.-P., Liao, H., & Chen, D.-B. (2021). Evaluating user reputation of online rating systems by rating statistical patterns. Knowledge-Based Systems, 219, 106895. https://doi.org/10.1016/j.knosys.2021.106895
Tian, G., Lu, L., & McIntosh, C. (2021). What factors affect consumers’ dining sentiments and their ratings: Evidence from restaurant online review data. Food Quality and Preference, 88, 104060. https://doi.org/10.1016/j.foodqual.2020.104060
UNWTO (Ed.). (2019). International Tourism Highlights, 2019 Edition. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284421152
Valdivia, A., Hrabova, E., Chaturvedi, I., Luzón, M. V., Troiano, L., Cambria, E., & Herrera, F. (2019). Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods. Neurocomputing, 353, 3–16. https://doi.org/10.1016/j.neucom.2018.09.096
Vermeulen, I. E., & Seegers, D. (2009). Tried and tested: The impact of online hotel reviews on consumer consideration. Tourism Management, 30(1), 123–127. https://doi.org/10.1016/j.tourman.2008.04.008
Waghmare, K. A., & Bhala, S. K. (2020). Survey Paper on Sentiment Analysis for Tourist Reviews. 2020 International Conference on Computer Communication and Informatics (ICCCI), 1–4. https://doi.org/10.1109/ICCCI48352.2020.9104197
Wang, Y., Tariq, S., & Alvi, T. H. (2021). How primary and supplementary reviews affect consumer decision making? Roles of psychological and managerial mechanisms. Electronic Commerce Research and Applications, 46, 101032. https://doi.org/10.1016/j.elerap.2021.101032
Wen, J., Lin, Z., Liu, X., Xiao, S. H., & Li, Y. (2021). The Interaction Effects of Online Reviews, Brand, and Price on Consumer Hotel Booking Decision Making. Journal of Travel Research, 60(4), 846–859. https://doi.org/10.1177/0047287520912330
Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001
Yang, N., Korfiatis, N., Zissis, D., & Spanaki, K. (2023). Incorporating topic membership in review rating prediction from unstructured data: A gradient boosting approach. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05336-z
Zheng, T., Lin, Z., Zhang, Y., Jiao, Q., Su, T., Tan, H., Fan, Z., Xu, D., & Law, R. (2023). Revisiting review helpfulness prediction: An advanced deep learning model with multimodal input from Yelp. International Journal of Hospitality Management, 114, 103579. https://doi.org/10.1016/j.ijhm.2023.103579
Zheng, T., Wu, F., Law, R., Qiu, Q., & Wu, R. (2021). Identifying unreliable online hospitality reviews with biased user-given ratings: A deep learning forecasting approach. International Journal of Hospitality Management, 92, 102658. https://doi.org/10.1016/j.ijhm.2020.102658
指導教授 周惠文(Huey-Wen Chou) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明