參考文獻 |
Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment Analysis Using Deep Learning Techniques: A Review. International Journal of Advanced Computer Science and Applications (IJACSA), 8(6), Article 6. https://doi.org/10.14569/IJACSA.2017.080657
Antonio, N., de Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018a). Hotel online reviews: Creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management, 30(12), 3574–3591. https://doi.org/10.1108/IJCHM-05-2017-0302
Antonio, N., de Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018b). Hotel online reviews: Creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management, 30(12), 3574–3591. https://doi.org/10.1108/IJCHM-05-2017-0302
Asghar, N. (2016). Yelp Dataset Challenge: Review Rating Prediction (arXiv:1605.05362). arXiv. https://doi.org/10.48550/arXiv.1605.05362
Balakrishnan, V., Shi, Z., Law, C. L., Lim, R., Teh, L. L., & Fan, Y. (2022). A deep learning approach in predicting products’ sentiment ratings: A comparative analysis. The Journal of Supercomputing, 78(5), 7206–7226. https://doi.org/10.1007/s11227-021-04169-6
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer (arXiv:2004.05150). arXiv. https://doi.org/10.48550/arXiv.2004.05150
Centeno, R., Hermoso, R., & Fasli, M. (2015). On the inaccuracy of numerical ratings: Dealing with biased opinions in social networks. Information Systems Frontiers, 17(4), 809–825. https://doi.org/10.1007/s10796-014-9526-1
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Chiedu, J. (2022, December 23). Start Your 2023 Domestic Travel From These Most Visited Cities In The US. TheTravel. https://www.thetravel.com/most-visited-cities-in-the-us/
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805
Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the Stars: Improving Rating Predictions using Review Text Content.
Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the quality of predictions using textual information in online user reviews. Information Systems, 38(1), 1–15. https://doi.org/10.1016/j.is.2012.03.001
Gavilan, D., Avello, M., & Martinez-Navarro, G. (2018). The influence of online ratings and reviews on hotel booking consideration. Tourism Management, 66, 53–61. https://doi.org/10.1016/j.tourman.2017.10.018
Gaye, B., & Wulamu, A. (2019). Sentimental Analysis for Online Reviews using Machine learning Algorithms. International Research Journal of Engineering and Technology (IRJET), 06(08).
Hassan, J., & Shoaib, U. (2020). Multi-class Review Rating Classification using Deep Recurrent Neural Network. Neural Processing Letters, 51(1), 1031–1048. https://doi.org/10.1007/s11063-019-10125-6
Hlee, S. (2020). How reviewer level affects review helpfulness and reviewing behavior across hotel classifications: The case of Seoul in Korea. Industrial Management & Data Systems, 121(6), 1191–1215. https://doi.org/10.1108/IMDS-03-2020-0150
Hlee, S., Lee, H., Koo, C., & Chung, N. (2021). Will the relevance of review language and destination attractions be helpful? A data-driven approach. Journal of Vacation Marketing, 27(1), 61–81. https://doi.org/10.1177/1356766720950356
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42–53. https://doi.org/10.1016/j.dss.2013.07.009
Hu, X., & Yang, Y. (2021). What makes online reviews helpful in tourism and hospitality? A bare-bones meta-analysis. Journal of Hospitality Marketing & Management, 30(2), 139–158. https://doi.org/10.1080/19368623.2020.1780178
Hu, Y.-H., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6, Part A), 929–944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003
Hutto, C., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), Article 1. https://doi.org/10.1609/icwsm.v8i1.14550
Islam, M. R. (2014). Numeric rating of Apps on Google Play Store by sentiment analysis on user reviews. 2014 International Conference on Electrical Engineering and Information & Communication Technology, 1–4. https://doi.org/10.1109/ICEEICT.2014.6919058
Ismagilova, E., Slade, E. L., Rana, N. P., & Dwivedi, Y. K. (2020). The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis. Information Systems Frontiers, 22(5), 1203–1226. https://doi.org/10.1007/s10796-019-09924-y
Jones, K. (1972). A STATISTICAL INTERPRETATION OF TERM SPECIFICITY AND ITS APPLICATION IN RETRIEVAL. Journal of Documentation, 28(1), 11–21. https://doi.org/10.1108/eb026526
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification (arXiv:1408.5882). arXiv. https://doi.org/10.48550/arXiv.1408.5882
Koutoulas, D., & Vagena, A. (2023). The present and future of hotel star ratings through the eyes of star rating operators. Journal of Tourism Futures, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JTF-04-2022-0120
Lai, X., Wang, F., & Wang, X. (2021). Asymmetric relationship between customer sentiment and online hotel ratings: The moderating effects of review characteristics. International Journal of Contemporary Hospitality Management, 33(6), 2137–2156. https://doi.org/10.1108/IJCHM-07-2020-0708
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents (arXiv:1405.4053). arXiv. https://doi.org/10.48550/arXiv.1405.4053
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539
Lee, M., Kwon, W., & Back, K.-J. (2021). Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117–2136. https://doi.org/10.1108/IJCHM-06-2020-0587
Lei, X., & Qian, X. (2015). Rating prediction via exploring service reputation. 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), 1–6. https://doi.org/10.1109/MMSP.2015.7340814
Leposa A. (2019, February 27). Stats: Travel Industry Second-Fastest Growing Sector in the World. Travel Agent Central. https://www.travelagentcentral.com/running-your-business/stats-travel-industry-second-fastest-growing-sector-world
Li, H. (2018). Deep learning for natural language processing: Advantages and challenges. National Science Review, 5(1), 24–26. https://doi.org/10.1093/nsr/nwx110
Lo, A. S., & Yao, S. S. (2019). What makes hotel online reviews credible? An investigation of the roles of reviewer expertise, review rating consistency and review valence. International Journal of Contemporary Hospitality Management, 31(1), 41–60. https://doi.org/10.1108/IJCHM-10-2017-0671
Luca, M. (2016). Reviews, Reputation, and Revenue: The Case of Yelp.Com (SSRN Scholarly Paper 1928601). https://doi.org/10.2139/ssrn.1928601
Luo, Y., & Xu, X. (2021). Comparative study of deep learning models for analyzing online restaurant reviews in the era of the COVID-19 pandemic. International Journal of Hospitality Management, 94, 102849. https://doi.org/10.1016/j.ijhm.2020.102849
Ma, Y., Xiang, Z., Du, Q., & Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120–131. https://doi.org/10.1016/j.ijhm.2017.12.008
Mauri, A. G., & Minazzi, R. (2013). Web reviews influence on expectations and purchasing intentions of hotel potential customers. International Journal of Hospitality Management, 34, 99–107. https://doi.org/10.1016/j.ijhm.2013.02.012
Mudambi, S. M., Schuff, D., & Zhang, Z. (2014). Why Aren’t the Stars Aligned? An Analysis of Online Review Content and Star Ratings. 2014 47th Hawaii International Conference on System Sciences, 3139–3147. https://doi.org/10.1109/HICSS.2014.389
Pandey, R., & Singh, J. P. (2023). BERT-LSTM model for sarcasm detection in code-mixed social media post. Journal of Intelligent Information Systems, 60(1), 235–254. https://doi.org/10.1007/s10844-022-00755-z
Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532–1543). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162
Prameswari, P., Zulkarnain, Surjandari, I., & Laoh, E. (2017). Mining online reviews in Indonesia’s priority tourist destinations using sentiment analysis and text summarization approach. 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), 121–126. https://doi.org/10.1109/ICAwST.2017.8256429
Pramudya, Y. G., & Alamsyah, A. (2023). Hotel Reviews Classification and Review-based Recommendation Model Construction using BERT and RoBERTa. 2023 6th International Conference on Information and Communications Technology (ICOIACT), 437–442. https://doi.org/10.1109/ICOIACT59844.2023.10455890
Puh, K., & Bagić Babac, M. (2022). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078
Qiu, J., Liu, C., Li, Y., & Lin, Z. (2018). Leveraging sentiment analysis at the aspects level to predict ratings of reviews. Information Sciences, 451–452, 295–309. https://doi.org/10.1016/j.ins.2018.04.009
R. Abas, A., Elhenawy, I., Zidan, M., & Othman, M. (2022). BERT-CNN: A Deep Learning Model for Detecting Emotions from Text. Computers, Materials & Continua, 71(2), 2943–2961. https://doi.org/10.32604/cmc.2022.021671
Rai, N., Kumar, D., Kaushik, N., Raj, C., & Ali, A. (2022). Fake News Classification using transformer based enhanced LSTM and BERT. International Journal of Cognitive Computing in Engineering, 3, 98–105. https://doi.org/10.1016/j.ijcce.2022.03.003
Reimer, T., & Benkenstein, M. (2016). When good WOM hurts and bad WOM gains: The effect of untrustworthy online reviews. Journal of Business Research, 69(12), 5993–6001. https://doi.org/10.1016/j.jbusres.2016.05.014
Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Discrepancy detection between actual user reviews and numeric ratings of Google App store using deep learning. Expert Systems with Applications, 181, 115111. https://doi.org/10.1016/j.eswa.2021.115111
Sansonetti, G., Gasparetti, F., & Micarelli, A. (2023). A Machine Learning Approach to Prediction of Online Reviews Reliability. In A. Coman & S. Vasilache (Eds.), Social Computing and Social Media (pp. 131–145). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-35915-6_11
Schuckert, M., Liu, X., & Law, R. (2016). Insights into Suspicious Online Ratings: Direct Evidence from TripAdvisor. Asia Pacific Journal of Tourism Research, 21(3), 259–272. https://doi.org/10.1080/10941665.2015.1029954
Serra Cantallops, A., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 41–51. https://doi.org/10.1016/j.ijhm.2013.08.007
Shan G., Zhang D., Zhou L., Suo L., Lim J., & Shi C. (2018). Inconsistency Investigation between Online Review Content and Ratings. Twenty-fourth Americas Conference on Information Systems. https://par.nsf.gov/biblio/10095442-inconsistency-investigation-between-online-review-content-ratings
Sharpley, R. (2000). The influence of the accommodation sector on tourism development: Lessons from Cyprus. International Journal of Hospitality Management, 19(3), 275–293. https://doi.org/10.1016/S0278-4319(00)00021-9
Shen, R.-P., Liu, D., & Shen, H.-S. (2023). Detecting review manipulation from behavior deviation: A deep learning approach. Electronic Commerce Research and Applications, 60, 101283. https://doi.org/10.1016/j.elerap.2023.101283
Shin, S., Du, Q., Ma, Y., Fan, W., & Xiang, Z. (2021). Moderating effects of rating on text and helpfulness in online hotel reviews: An analytical approach. Journal of Hospitality Marketing & Management, 30(2), 159–177. https://doi.org/10.1080/19368623.2020.1778596
Subroto, A., & Christianis, M. (2021). Rating prediction of peer-to-peer accommodation through attributes and topics from customer review. Journal of Big Data, 8(1), 9. https://doi.org/10.1186/s40537-020-00395-6
Sun, H.-L., Liang, K.-P., Liao, H., & Chen, D.-B. (2021). Evaluating user reputation of online rating systems by rating statistical patterns. Knowledge-Based Systems, 219, 106895. https://doi.org/10.1016/j.knosys.2021.106895
Tian, G., Lu, L., & McIntosh, C. (2021). What factors affect consumers’ dining sentiments and their ratings: Evidence from restaurant online review data. Food Quality and Preference, 88, 104060. https://doi.org/10.1016/j.foodqual.2020.104060
UNWTO (Ed.). (2019). International Tourism Highlights, 2019 Edition. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284421152
Valdivia, A., Hrabova, E., Chaturvedi, I., Luzón, M. V., Troiano, L., Cambria, E., & Herrera, F. (2019). Inconsistencies on TripAdvisor reviews: A unified index between users and Sentiment Analysis Methods. Neurocomputing, 353, 3–16. https://doi.org/10.1016/j.neucom.2018.09.096
Vermeulen, I. E., & Seegers, D. (2009). Tried and tested: The impact of online hotel reviews on consumer consideration. Tourism Management, 30(1), 123–127. https://doi.org/10.1016/j.tourman.2008.04.008
Waghmare, K. A., & Bhala, S. K. (2020). Survey Paper on Sentiment Analysis for Tourist Reviews. 2020 International Conference on Computer Communication and Informatics (ICCCI), 1–4. https://doi.org/10.1109/ICCCI48352.2020.9104197
Wang, Y., Tariq, S., & Alvi, T. H. (2021). How primary and supplementary reviews affect consumer decision making? Roles of psychological and managerial mechanisms. Electronic Commerce Research and Applications, 46, 101032. https://doi.org/10.1016/j.elerap.2021.101032
Wen, J., Lin, Z., Liu, X., Xiao, S. H., & Li, Y. (2021). The Interaction Effects of Online Reviews, Brand, and Price on Consumer Hotel Booking Decision Making. Journal of Travel Research, 60(4), 846–859. https://doi.org/10.1177/0047287520912330
Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001
Yang, N., Korfiatis, N., Zissis, D., & Spanaki, K. (2023). Incorporating topic membership in review rating prediction from unstructured data: A gradient boosting approach. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05336-z
Zheng, T., Lin, Z., Zhang, Y., Jiao, Q., Su, T., Tan, H., Fan, Z., Xu, D., & Law, R. (2023). Revisiting review helpfulness prediction: An advanced deep learning model with multimodal input from Yelp. International Journal of Hospitality Management, 114, 103579. https://doi.org/10.1016/j.ijhm.2023.103579
Zheng, T., Wu, F., Law, R., Qiu, Q., & Wu, R. (2021). Identifying unreliable online hospitality reviews with biased user-given ratings: A deep learning forecasting approach. International Journal of Hospitality Management, 92, 102658. https://doi.org/10.1016/j.ijhm.2020.102658 |