博碩士論文 110521032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.15.150.178
姓名 楊云緯(Yun-Wei Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於強化學習的晶片佈局規劃的卷積神經網路與圖神經網路融合架構
(FusionPlanner: A CNN-GNN Fusion Architecture for Reinforcement Learning-based Floorplanning)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一種可動態重新配置的4:2近似壓縮器用於補償老化★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究
★ 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法★ 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略
★ 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法
★ 用於響應穩定性的老化感知平行掃描鏈PUF設計★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用
★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求★ 用於佈線後階段電壓降優化的強化學習框架
★ 多核心系統的老化與瞬態錯誤感知任務部署策略:壽命延長且節能的框架★ 基於圖神經網絡(GNN)的內部節點控制(INC)和輸入向量控制(IVC)協同優化用於老化緩解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-3-7以後開放)
摘要(中) 晶片佈局規劃是晶片設計的關鍵步驟,決定了在晶片畫布上放置模組的位置。一個良好的佈局方案可以最小化連接晶片上不同模組所需的總線長度。更短的總線長度意味著訊號延遲更小、功耗更低,從而導致晶片運行更快、更有效率。然而考量到現今的晶片通常包含數十億個電晶體,且布局的結果會大大的影響擺置與繞線的進行,因此採用傳統演算法如貪婪演算法或啟發式演算法的布局策略,通常難以找到最優解。強化學習(RL)提供了一種有希望的方法來解決這些限制。它透過試誤和獎勵進行學習,調整策略以找到最佳解決方案。這使得它非常適合解決諸如佈局規劃之類的複雜最佳化問題。
本研究介紹了FusionPlanner,這是一種新穎的模型,有效地利用了本地和全局信息,自主創建有效的晶片佈局設計。其性能可以超越或匹配最近先進方法的水平。它具有許多吸引人的優點,在以前的工作中是不存在的。首先,以往的晶片佈局規劃工作通常集中在硬模塊(Hard macros)上。我們的工作透過考慮軟模組和硬模塊的面積和連接性,解決了佈局軟模組的挑戰。這使我們能夠產生更準確的佈局圖,考慮到軟模塊(Soft modules)選項的全部範圍,並防止與硬模塊的任何重疊。其次,我們的工作採用了基於圖的網路訓練方法,並著重於邊緣特徵的有效整合。我們的方法結合了影像特徵以捕捉局部訊息,以及圖形特徵以掌握全局資訊。這種綜合方法旨在增強對局部細節的感知,同時在影像內捕捉更廣泛的上下文理解。
我們的實驗表明,我們的研究提出了一個可以改善28奈米工業設計晶片佈局總線長度的方法。此外,我們的研究可以透過在設計過程的早期考慮軟模組,來減少晶片佈局的設計時間。 
摘要(英) Chip floorplanning is a crucial step in chip design, determining the placement of modules on the chip canvas. A good floorplan minimizes the total wirelength of connections to different modules on the chip. Shorter wires imply less signal delay and lower power consumption, leading to faster and more efficient chip operation. However, considering the modern ICs with millions of transistors, conventional greedy-based or heuristic-based floorplan algorithms often leads to sub-optimal solutions. Reinforcement learning (RL) offers a promising approach to addressing these limitations. It learns through trial and error and guides by rewards, adapting its strategy to find the best solution. This makes RL suitable for tackling complex optimization problems like floorplanning.
This thesis introduces FusionPlanner, a novel model that effectively leverages both local and global information to autonomously create a valid chip layout design. Its performance can surpass or match state-of-the-art methods. It possesses numerous attractive advantages that are absent in previous works. Firstly, previous works on chip floorplanning have typically focused on hard macros. Our work addresses the challenges of handling soft modules by considering the area and connectivity of both soft modules and hard macros. This allows us to produce more accurate floorplans that take into account the full range of soft module options and prevent any overlap with hard macros. Secondly, our work uses a graph-based network training approach that focuses on the effective integration of edge features. Our method combines image features to capture local information and graph features to grasp global information. This integrated approach aims to enhance the perception of local details while capturing a more extensive contextual understanding within the image.
Our experiments demonstrate that our floorplan method can successfully improve the total wirelength of industrial designs with 28nm technology. In addition, our work can reduce the design time of chip floorplanning by considering soft modules earlier in the design process.
關鍵字(中) ★ 強化式學習
★ 布圖規劃
★ 實體設計
關鍵字(英) ★ Reinforcement learning
★ Floorplan
★ Physical design
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
Table of Figures vi
Table of Tables vii
Notation Illustration viii
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Challenges of Floorplanning 3
1.3 Related Works 4
1.4 Contributions 6
Chapter 2 Preliminaries 8
2.1 Reinforcement Learning (RL) 8
2.1.1 Proximal Policy Optimization (PPO) 9
2.2 Graph Neural Networks (GNNs) 11
2.2.1 GAT 12
2.2.2 EGAT 14
Chapter 3 Methodology 17
3.1 Problem Formulation 17
3.2 The Model Architecture 19
3.2.1 The Graph Features 19
3.2.2 The Image Feature 21
3.2.3 Combing These Embedded Features 22
3.2.4 Policy Network 22
3.2.5 Value Network 23
3.3 Reward Design 24
3.4 Soft Module Flow 24
3.5 Training and Testing 26
Chapter 4 Experimental Results 27
4.1 Benchmarks and Settings 27
4.2 HPWL Results 28
4.3 Feature Significance Assessment 30
4.4 Soft Module Flow Results 31
Chapter 5 Conclusions 32
Reference 33
參考文獻 [1] Alupoaei, Stelian and Srinivas Katkoori. “Net-based force-directed macrocell placement for wirelength optimization.” IEEE Trans. Very Large Scale Integr. Syst. 10 (2002): 824-835.
[2] A. Vidal-Obiols. et al. "Multilevel Dataflow-Driven Macro Placement Guided by RTL Structure and Analytical Methods," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 12, pp. 2542-2555, Dec. 2021.
[3] Cheng, Chung-Kuan et al. “RePlAce: Advancing Solution Quality and Routability Validation in Global Placement.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38 (2019): 1717-1730.
[4] Chang, Fu-Chieh et al. “Flexible Multiple-Objective Reinforcement Learning for Chip Placement.” ArXiv abs/2204.06407 (2022): n. pag.
[5] Cheng, Ruoyu and Junchi Yan. “On Joint Learning for Solving Placement and Routing in Chip Design.” Neural Information Processing Systems (2021).
[6] Chen, Tianshui et al. “Knowledge-Embedded Representation Learning for Fine-Grained Image Recognition.” International Joint Conference on Artificial Intelligence (2018).
[7] Chen, Tung-Chieh and Yao-Wen Chang. “Modern floorplanning based on B/sup */-tree and fast simulated annealing.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25 (2006): 637-650.
[8] Chen, Tung-Chieh and Yao-Wen Chang. “Modern floorplanning based on fast simulated annealing.” ACM International Symposium on Physical Design (2005).
[9] Goldie, Anna and Azalia Mirhoseini. “Placement Optimization with Deep Reinforcement Learning.” Proceedings of the 2020 International Symposium on Physical Design (2020): n. pag.
[10] Ho, Shinn-Ying et al. “An orthogonal simulated annealing algorithm for large floorplanning problems.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12 (2004): 874-877.
[11] Kahng, Andrew B. et al. “Hier-RTLMP: A Hierarchical Automatic Macro Placer for Large-scale Complex IP Blocks.” ArXiv abs/2304.11761 (2023): n. pag.
[12] Kamiński, Kamil et al. “Rossmann-toolbox: a deep learning-based protocol for the prediction and design of cofactor specificity in Rossmann fold proteins.” Briefings in Bioinformatics 23 (2021): n. pag.
[13] Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” CoRR abs/1412.6980 (2014): n. pag.
[14] Kirkpatrick, Scott et al. “Optimization by Simulated Annealing.” Science 220 (1983): 671 - 680.
[15] Lai, Yao et al. “ChiPFormer: Transferable Chip Placement via Offline Decision Transformer.” ArXiv abs/2306.14744 (2023): n. pag.
[16] Lai, Yao et al. “MaskPlace: Fast Chip Placement via Reinforced Visual Representation Learning.” ArXiv abs/2211.13382 (2022): n. pag.
[17] Lin, Yibo et al. “DREAMPIace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement.” 2019 56th ACM/IEEE Design Automation Conference (DAC) (2019): 1-6.
[18] Mirhoseini, Azalia et al. “A graph placement methodology for fast chip design.” Nature 594 (2021): 207 - 212.
[19] Oh, Changyong et al. “Bayesian Optimization for Macro Placement.” ArXiv abs/2207.08398 (2022): n. pag.
[20] Schulman, John et al. “Proximal Policy Optimization Algorithms.” ArXiv abs/1707.06347 (2017): n. pag.
[21] Smith, Leslie N.. “Cyclical Learning Rates for Training Neural Networks.” 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (2015): 464-472.
[22] Shi, Yunqi et al. “Macro Placement by Wire-Mask-Guided Black-Box Optimization.” ArXiv abs/2306.16844 (2023): n. pag.
[23] Tang, Maolin. “A New Greedy Algorithm for VLSI Floorplan Optimization.” 2008 International Conference on Computer Science and Software Engineering 4 (2008): 1126-1129.
[24] Ueda, Kazuhiro et al. “CHAMP: Chip Floor Plan for Hierarchical VLSI Layout Design.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 4 (1985): 12-22.
[25] Vaswani, Ashish et al. “Attention is All you Need.” Neural Information Processing Systems (2017).
[26] Vidal-Obiols, Alex et al. “RTL-Aware Dataflow-Driven Macro Placement.” 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2019): 186-191.
[27] Velickovic, Petar et al. “Graph Attention Networks.” ArXiv abs/1710.10903 (2017): n. pag.
[28] Yiting Liu, Ziyi Ju, Zhengming Li, Mingzhi Dong, Hai Zhou, Jia Wang, Fan Yang, Xuan Zeng, and Li Shang. 2022. GraphPlanner: Floorplanning with Graph Neural Network. ACM Trans. Des. Autom. Electron. Syst. 28, 2, Article 21 (March 2023), 24 pages.
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2024-3-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明