參考文獻 |
[1] S. Salahuddin, K. Ni, S. Datta, "The era of hyper-scaling in electronics" Nat. Electron. 1, 442−450 (2018)
[2] A. Charnas, M. W. Si, Z. H. Lin, P. D. Ye, "Enhancement-mode atomic-layer thin In2O3 transistors with maximum current exceeding 2 A/mm at drain voltage of 0.7 V enabled by oxygen plasma treatment" Appl. Phys. Lett. 118, 052107 (2021)
[3] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "P-Channel Thin-Film Transistor Using P-Type Oxide Semiconductor, SnO" Appl. Phys. Lett. 93, 032113 (2008)
[4] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. K. Park, C. S. Hwang, R. Martins, "Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing" Appl. Phys. Lett. 97, 052105 (2010)
[5] M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas, D. Zheng, X. Lyu, H. Wang, H. Wang, K. Cho, P.D. Ye "Why In2o3 Can Make 0.7 Nm Atomic Layer Thin Transistors" Nano Lett. 26, 500−506 (2020)
[6] C. Sun, K. Han, S. Samanta, Q. Kong, J. Zhang, H. Xu, et al., "First demonstration of BEOL-compatible ferroelectric TCAM featuring a-IGZO fe-TFTs with large memory window of 2.9 V scaled channel length of 40 nm and high endurance of 108 cycles", Proc. Symp. VLSI Technol., pp. 1-2, Jun. (2021)
[7] C. Sun et al., "Computational associative memory with amorphous metal-oxide channel 3D NAND-compatible floating-gate transistors", Adv. Electron. Mater., vol. 8, no. 12, Dec. (2022)
[8] Z. Zhao et al., "Computational associative memory based on monolithically integrated metal-oxide thin film transistors for update-frequent search applications", IEDM Tech. Dig., pp. 37.6.1-37.6.4, Dec. (2021)
[9] I.-J. Kim, M.-K. Kim, J.-S. Lee, "Design Strategy to Improve Memory Window in Ferroelectric Transistors With Oxide Semiconductor Channel". IEEE Electron Device Lett. 44, 249–252 (2022)
[10] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4", Thin Solid Films 486 (1-2) 38-41 (2005)
[11] H.-W. Zan, W.-W. Tsai, C.-H. Chen, C.-C. Tsai, "Effective mobility enhancement by using nanometer dot doping in amorphous IGZO thin-film transistors", Adv. Mater. 23, 4237–4242 (2011)
[12] Y.-H. Lin and J.-C. Chou, "Temperature effects on a-IGZO thin film transistors using HfO2 gate dielectric material," J. Nanomaterials, 1–5 (2014)
[13] Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, H. N. Alshareef, "Recent Developments in p-Type Oxide Semiconductor Materials and Devices" Adv. Mater. 28, 3831−3892 (2016)
[14] Y. Li et al., "Complementary integrated circuits based on p-type SnO and n-type IGZO thin-film transistors", IEEE Electron Device Lett., vol. 39, no. 2, pp. 208-211, Feb. (2018)
[15] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: A review of recent advances,” Adv. Mater., vol. 24, no. 22, pp. 2945–2986, Jun. (2012)
[16] Sharp Begins Production of World’s First LCD Panels Incorporating IGZO Oxide, https://global.sharp/corporate/news/120413.html (accessed: March 2024).
[17] Developing 5th generation IGZO*2- Full expansion from mobile to large panel size, https://corporate.jp.sharp/news/190424-a.html (accessed: March 2024).
[18] J. Shi, J. Zhang, L. Yang, M. Qu, D. Qi and K. H. L. Zhang, "Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices", Adv. Mater., vol. 33, no. 50, Dec. (2021)
[19] M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, "Editors’ Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates", ECS J. Solid State Sci. Technol., vol. 6, no. 2, pp. Q3040–Q3044 (2017)
[20] S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, and M. Grundmann, "Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature and pressure: Control of the conductivity of Si-doped β-Ga2O3 thin films", Phys. Status Solidi A, vol. 211, no. 1, pp. 34–39, Jan. (2014)
[21] S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, "Room-Temperature Fabricated Amorphous Ga2O3 High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates", Advanced Optical Materials, vol. 5, no. 19, p. 1700454, Oct. (2017)
[22] J. Kim et al., "Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor", NPG Asia Mater, vol. 9, no. 3, pp. e359–e359, Mar. (2017)
[23] J. Sun, A. Lu, L. Wang, Y. Hu, Q. Wan, "High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature", Nanotechnology, vol. 20, p. 335204 (2009)
[24] J. Jang, R. Kitsomboonloha, S. L. Swisher, E. S. Park, H. Kang, V. Subramanian, "Transparent High-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors", Adv. Mater., vol. 25, pp. 1042-1047 (2013)
[25] B. Jang et al., "High performance ultrathin SnO2 thin-film transistors by sol–gel method", IEEE Electron Device Lett., vol. 39, no. 8, pp. 1179-1182, Aug. (2018)
[26] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, "Fabrication and photo response of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO", Appl. Phys. Lett. 83, 1029 (2003)
[27] H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, Y. Iwasa, "p-Type field-effect transistor of NiO with electric double-layer gating", Appl. Phys. Lett. 92, 242107 (2008)
[28] J. Jiang, X. Wang, Q. Zhang, J. Li, X. Zhang, "Thermal oxidation of Ni films for p-type thin-film transistors", Phys. Chem. Chem. Phys. 15, 6875–6878 (2013)
[29] Y. Chen, Y. Sun, X. Dai, B. Zhang, Z. Ye, M. Wang, H. Wu, "Tunable electrical properties of NiO thin films and p-type thin-film transistors", Thin Solid Films. 592, 195–199 (2015)
[30] H.A. Al-Jawhari, "A review of recent advances in transparent p-type Cu2O-based thin film transistors" Materials Science in Semiconductor Processing, Volume 40, Pages 241-252, December (2015)
[31] J. Li, Z.Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, X. Du, "Probing Defects in Nitrogen-Doped Cu2O", Scientific Reports, 4, 7240 (2014)
[32] Y. Hu, D. Schlom, S. Datta, K. Cho, "Interlayer Engineering of Band Gap and Hole Mobility in p-Type Oxide SnO", ACS Appl. Mater. Interfaces, 14, 25670– 25679, (2022)
[33] Y. Hu, J. Hwang, Y. Lee, P. Conlin, D. G. Schlom, S. Datta ; K. Cho, "First Principles Calculations of Intrinsic Mobilities in Tin-Based Oxide Semiconductors SnO, SnO2, and Ta2SnO6. J. Appl. Phys. 126, 185701 (2019)
[34] L.-T. Nguyen and G. Makov, "High-Pressure Phases of SnO and PbO: A Density Functional Theory Combined with an Evolutionary Algorithm Approach", Materials, 14, 6552 (2021)
[35] R. Batra, H.-D. Tran, R. Ramprasad, "Stabilization of metastable phases in hafnia owing to surface energy effects", Appl. Phys. Lett. 108, 172902 (2016)
[36] R. Materlik, C. Künneth, A. Kersch, "The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model", J. Appl. Phys. 117, 134109 (2015)
[37] R. Batra, T.-D. Huan, J. L. Jones, G. Rossetti, Jr., R. Ramprasad, "Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study", J. Phys. Chem. C, 121, 4139–4145 (2017)
[38] N. Tiwari, A. Nirmal, M.-R. Kulkarni, R.-A. John, N. Mathews, "Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors". Inorg. Chem. Front., 7, 1822–1844 (2020)
[39] Y. Zhu, Y. He, S. Jiang, L. Zhu, C. Chen, Q. Wan, "Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications", J. Semicond. 42 031101 (2021)
[40] Masataka Higashiwaki et al., "Recent progress in Ga2O3 power devices", Semicond. Sci. Technol. 31, 034001 (2016)
[41] A.-M. Ganose, D.-O. Scanlon, "Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics" J. Mater. Chem. C, 4, 1467-1475 (2016)
[42] J. Robertson, Z. Zhang, "Doping limits in p-type oxide semiconductors", MRS Bulletin, Volume 46, pages 1037–1043, (2021)
[43] W. Zhou, N. Umezawa, "Band gap engineering of bulk and nanosheet SnO: Insight into the interlayer Sn-Sn lone pair interactions", Phys. Chem. Chem. Phys., 17, 17816-17820 (2015)
[44] P. Geerlings, F. De Proft, W. Langenaeker, "Conceptual Density Functional Theory", Chem. Rev., 103, 5, 1793–1874 (2003)
[45] C. Stampfl et al., "Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations", Phys. Rev. B 63, 155106 (2001)
[46] M. Lazzeri et al., "Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite", Phys. Rev. B 78, 081406(R) (2008)
[47] P. Schwerdtfeger et al., "The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH", J. Chem. Phys. 113, 7110–7118 (2000)
[48] Introduction to Molecular Dynamics, https://slideplayer.com/slide/13497704 (accessed: March 2024).
[49] G. Kresse, J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Phys. Rev. B, 54, 11169–11186 (1996)
[50] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán, "Screened hybrid density functionals applied to solids", J. Chem. Phys. 124, 154709 (2006).
[51] Y. Hu, D. Schlom, S. Datta, K. Cho, "Amorphous Ta2SnO6: A hole-dopable p-type oxide", Applied Surface Science, 613, 155981 (2023)
[52] K. Reuter, M. Scheffler, "Composition, structure, and stability of RuO2(110) as a function of oxygen pressure", PHYSICAL REVIEW B, VOLUME 65, 035406 (2001)
[53] J. Robertson and S. J. Clark, "Limits to doping in oxides", Phys. Rev. B, 83, 075205 (2011)
[54] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze1, "Identification and design principles of low hole effective mass p-type transparent conducting oxides", Nature Communications volume 4, Article number: 2292 (2013)
[55] M. Barone et al., "Growth of Ta2SnO6 Films, a Candidate Wide-Band-Gap p‑Type Oxide", J. Phys. Chem. C, 126, 3764–3775 (2022) |