博碩士論文 110423035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.145.40.139
姓名 張珮慈(Pei-Tzu Chang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(Prediction of Second Primary Cancer Among Lung Cancer Patients with Competing Risk Survival Analysis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 肺癌為全世界癌症種類中,具有高發生率與高死亡率的癌症。隨著癌症治療的進 步,第二原發性癌症已經成為癌症倖存者面臨的嚴重問題。競爭風險生存分析已被應 用於研究此類患者的疾病預後狀況,機器學習和深度學習的興起也被用於改良競爭風 險生存分析方法。本研究的目標是運用統計學、基於機器學習和基於深度學習的生存 分析模型,來預測肺癌的患者在考慮或不考慮死亡作為競爭風險事件的情況下,罹患 第二原發性癌症的風險。所納入的模型包括 Cox 比例風險模型、隨機生存森林、梯度 提升生存分析、生存支持向量機、DeepSurv、特定原因 Cox 比例風險模型、Fine-Gray 模型、競爭風險的隨機生存森林以及競爭風險的部分邏輯人工神經網絡模型 (PLANNCR)。模型性能通過 180 天、360 天、540 天、720 天、900 天、1080 天的時間 依賴性特徵曲線下面積(time-dependent AUC)和整合 Brier 得分進行比較。結果顯 示,競爭風險的隨機生存森林方法在六個時間點上訓練 30 次的平均 time-dependent AUC 為最高,分別為 0.755、0.745、0.741、0.745、0.741 和 0.739。此外,競爭風險 的隨機生存森林方法在各模型中整合 Brier 得分最低,為 0.0275。總結而言,我們的 研究表明,在不同時間點預測目標事件時,競爭風險生存分析方法的區分能力和校準 能力更加穩定。
摘要(英) Lung cancer has not only a high incidence rate, but also a high mortality rate in the world. With the improvement in cancer treatment, second primary cancer has become a serious issue for cancer survivors. Competing risk survival analysis has been applied to study disease prognosis of such patients. With the rise of machine learning and deep learning methods, a variety of competing risk survival analysis methods have been proposed. In this study, our objective was to employ statistical, machine learning-based, and deep learning-based survival analysis models to predict second primary cancer in patients diagnosed with lung cancer with and without death as its competing risk event. The models included were Cox Proportional Hazards model (CPH), Random Survival Forests (RSF), Gradient Boosting Survival Analysis (GBSA), Survival Support Vector Machine (SSVM), DeepSurv, Cause-Specific Cox proportional hazard regression (CSC), Fine-Gray regression (FGR), Random Survival Forests for competing risks (RSFCR), and the partial logistic artificial neural network model for competing risks (PLANNCR). The performances were compared with time-dependent area under the receiver operating characteristic curve (AUC) at 180, 360, 540, 720, 900, 1080 days and Integrated Brier Score throughout this period. The result showed that RSFCR had the highest average time-dependent AUC over 30 training times of 0.755, 0.745, 0.741, 0.745, 0.741 and 0.739 at six time points, respectively. RSFCR also had the lowest Integrated Brier Score of 0.0275 between the models. In summary, our study suggests that the discriminative and calibration abilities of competing risk survival analysis methods are more stable when predicting the event of interest at a set of different time points.
關鍵字(中) ★ 生存分析
★ 競爭風險生存分析
★ 機器學習
★ 深度學習
★ 第二原發性癌症
★ 肺癌
關鍵字(英) ★ survival analysis
★ competing risk survival analysis
★ machine learning
★ deep learning
★ second primary cancer
★ lung cancer
論文目次 摘要 .............................................................................................................................................i Abstract.......................................................................................................................................ii
Table of Contents.......................................................................................................................iii
List of Figures.............................................................................................................................v
List of Tables .............................................................................................................................vi
I. Introduction ......................................................................................................................... 1
1-1 Research Background ......................................................................................... 1
1-1-1 Lung Cancer ....................................................................................................... 1
1-1-2 Second Primary Cancer ......................................................................................1
1-1-3 Machine Learning...............................................................................................2
1-1-4 Survival Analysis................................................................................................3
1-2 Research Motivation...........................................................................................4
1-3 Research Objectives ........................................................................................... 4
II. Literature Review ............................................................................................... 6
2-1 Machine Learning in Prediction of Disease Prognosis.......................................6
2-2 Survival Analysis in Prediction of Disease Prognosis .......................................7
2-3 Competing Risk Survival Analysis in Prediction of Disease Prognosis ............9
III. Methods ............................................................................................................ 11
3-1 Data Sources.....................................................................................................11
3-2 Definition of Case Group and Control Group .................................................. 11
3-3 Data Preprocessing ........................................................................................... 13
3-4 Survival Analysis Models.................................................................................14
3-4-1 Survival Analysis..............................................................................................15
3-4-2 Competing Risk Survival Analysis ..................................................................16
3-5 Predictive Performance Evaluation .................................................................. 18
3-5-1 Time-dependent AUC.......................................................................................18
3-5-2 Integrated Brier Score.......................................................................................19
3-6 Model Training Strategy...................................................................................20
3-7 Statistical Analysis ...........................................................................................23
3-8 Survival Curve..................................................................................................23
3-9 Feature Importance ........................................................................................... 24
IV. Results .............................................................................................................. 25
4-1 Data Cleaning ................................................................................................... 25
4-2 Data Characteristics..........................................................................................26
4-3 Best Parameter Combinations ..........................................................................30
4-4 Performance Comparison of Different Models ................................................ 32
4-4-1 Time-dependent AUC.......................................................................................32
4-4-2 Integrated Brier Score.......................................................................................43
4-5 Survival Curve of the Best Models ..................................................................46
4-6 Feature Importance of Best Model ................................................................... 47
V. Discussion and Limitation ................................................................................ 50
VI. Conclusion ........................................................................................................ 54
References ................................................................................................................................55
Appendix ..................................................................................................................................61
參考文獻 World Health Organization, “Cancer today.” Accessed: Mar. 27, 2023. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf
[2] National Cancer Institution, “Cancer of the Lung and Bronchus - Cancer Stat Facts,” SEER. Accessed: Mar. 27, 2023. [Online]. Available: https://seer.cancer.gov/statfacts/html/lungb.html
[3] 衛生福利部統計處, “歷年統計,” 統計處. Accessed: Mar. 28, 2023. [Online]. Available: https://dep.mohw.gov.tw/DOS/lp-5069-113.html
[4] W. S, “Multiple primary malignant tumors. A survey of the literature and a statistical study,” Am J Cancer, vol. 16, pp. 1359–1414, 1932.
[5] M. Utada, Y. Ohno, M. Hori, and M. Soda, “Incidence of multiple primary cancers and interval between first and second primary cancers,” Cancer Sci., vol. 105, no. 7, pp. 890– 896, Jul. 2014, doi: 10.1111/cas.12433.
[6] L. B. Travis, “The Epidemiology of Second Primary Cancers,” Cancer Epidemiol. Biomarkers Prev., vol. 15, no. 11, pp. 2020–2026, Nov. 2006, doi: 10.1158/1055- 9965.EPI-06-0414.
[7] Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is Machine Learning? A Primer for the Epidemiologist,” Am. J. Epidemiol., vol. 188, no. 12, pp. 2222–2239, Dec. 2019, doi: 10.1093/aje/kwz189.
[8] K. P. Murphy, “Machine learning - a probabilistic perspective,” presented at the Adaptive computation and machine learning series, 2012. Accessed: Apr. 21, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Machine-learning-a-probabilistic- perspective-Murphy/360ca02e6f5a5e1af3dce4866a257aafc2d6d6f5
[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
[10] O. Baloglu, S. Q. Latifi, and A. Nazha, “What is machine learning?,” Arch. Dis. Child. - Educ. Pract. Ed., vol. 107, no. 5, pp. 386–388, Oct. 2022, doi: 10.1136/archdischild- 2020-319415.
[11] Y. Jeon and W. K. Lee, “Competing Risk Model in Survival Analysis,” Cardiovasc. Prev. Pharmacother., vol. 2, no. 3, pp. 77–84, Jul. 2020, doi: 10.36011/cpp.2020.2.e11.
[12] L. Ohno-Machado, “Modeling Medical Prognosis: Survival Analysis Techniques,” J. Biomed. Inform., vol. 34, no. 6, pp. 428–439, Dec. 2001, doi: 10.1006/jbin.2002.1038.
[13] P. C. Austin, D. S. Lee, and J. P. Fine, “Introduction to the Analysis of Survival Data in the Presence of Competing Risks,” Circulation, vol. 133, no. 6, pp. 601–609, Feb. 2016, doi: 10.1161/CIRCULATIONAHA.115.017719.
[14] P. Wang, Y. Li, and C. K. Reddy, “Machine Learning for Survival Analysis: A Survey,” ACM Comput. Surv., vol. 51, no. 6, p. 110:1-110:36, Feb. 2019, doi: 10.1145/3214306.
[15] M. Kono et al., “Incidence of Second Malignancy after Successful Treatment of Limited- Stage Small–Cell Lung Cancer and Its Effects on Survival,” J. Thorac. Oncol., vol. 12, no. 11, pp. 1696–1703, Nov. 2017, doi: 10.1016/j.jtho.2017.07.030.
[16] “Smoking history predicts for increased risk of second primary lung cancer: A comprehensive analysis - Boyle - 2015 - Cancer - Wiley Online Library.” Accessed: Apr. 22, 2024. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29095
[17] M. Eberl, L. F. Tanaka, K. Kraywinkel, and S. J. Klug, “Incidence of Smoking-Related Second Primary Cancers After Lung Cancer in Germany: An Analysis of Nationwide Cancer Registry Data,” J. Thorac. Oncol., vol. 17, no. 3, pp. 388–398, Mar. 2022, doi: 10.1016/j.jtho.2021.11.016.
[18] I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective,” Artif. Intell. Med., vol. 23, no. 1, pp. 89–109, Aug. 2001, doi: 10.1016/S0933-3657(01)00077-X.
[19] K. Monterrubio-Gómez, N. Constantine-Cooke, and C. A. Vallejos, “A review on competing risks methods for survival analysis,” Dec. 09, 2022, arXiv: arXiv:2212.05157. Accessed: Mar. 01, 2024. [Online]. Available: http://arxiv.org/abs/2212.05157
[20] C.-C. Chang and S.-H. Chen, “Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors,” Front. Genet., vol. 10, Sep. 2019, doi: 10.3389/fgene.2019.00848.
[21] W.-C. Ting, Y.-C. A. Lu, W.-C. Ho, C. Cheewakriangkrai, H.-R. Chang, and C.-L. Lin, “Machine Learning in Prediction of Second Primary Cancer and Recurrence in Colorectal Cancer,” Int. J. Med. Sci., vol. 17, no. 3, pp. 280–291, Jan. 2020, doi: 10.7150/ijms.37134.
[22] R. Wu et al., “Evaluation of machine learning algorithms for the prognosis of breast cancer from the Surveillance, Epidemiology, and End Results database,” PLOS ONE, vol. 18, no. 1, p. e0280340, Jan. 2023, doi: 10.1371/journal.pone.0280340.
[23] S. Hindocha et al., “A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models,” eBioMedicine, vol. 77, Mar. 2022, doi: 10.1016/j.ebiom.2022.103911.
[24] B. George, S. Seals, and I. Aban, “Survival analysis and regression models,” J. Nucl. Cardiol., vol. 21, no. 4, pp. 686–694, Aug. 2014, doi: 10.1007/s12350-014-9908-2.
[25] E. Leoncini et al., “Tumour stage and gender predict recurrence and second primary malignancies in head and neck cancer: a multicentre study within the INHANCE consortium,” Eur. J. Epidemiol., vol. 33, no. 12, pp. 1205–1218, Dec. 2018, doi: 10.1007/s10654-018-0409-5.
[26] J. Xiao et al., “The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study,” JMIR Med. Inform.,vol. 10, no. 2, p. e33440, Feb. 2022, doi: 10.2196/33440.
[27] D. Wang et al., “Development and validation of machine learning models for predicting
prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma,” Front. Oncol., vol. 13, p. 1106029, 2023, doi: 10.3389/fonc.2023.1106029.
[28] X. Yang, H. Qiu, L. Wang, and X. Wang, “Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study,” J. Med. Internet Res., vol. 25, no. 1, p. e44417, Oct. 2023, doi: 10.2196/44417.
[29] R. Li, Y. Zhang, B. Ma, K. Tan, H. S. Lynn, and Z. Wu, “Survival analysis of second primary malignancies after cervical cancer using a competing risk model: implications for prevention and surveillance,” Ann. Transl. Med., vol. 9, no. 3, p. 239, Feb. 2021, doi: 10.21037/atm-20-2003.
[30] S. M. de Boer et al., “Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial,” Lancet Oncol., vol. 20, no. 9, pp. 1273– 1285, Sep. 2019, doi: 10.1016/S1470-2045(19)30395-X.
[31] C. G. Rusthoven et al., “Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study,” JAMA Oncol., vol. 6, no. 7, pp. 1028–1037, Jul. 2020, doi: 10.1001/jamaoncol.2020.1271.
[32] G. Kantidakis, H. Putter, S. Litière, and M. Fiocco, “Statistical models versus machine learning for competing risks: development and validation of prognostic models,” BMC Med. Res. Methodol., vol. 23, no. 1, p. 51, Feb. 2023, doi: 10.1186/s12874-023-01866-z.
[33] C.-J. Chiang, S.-L. You, C.-J. Chen, Y.-W. Yang, W.-C. Lo, and M.-S. Lai, “Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review,” Jpn. J. Clin. Oncol., vol. 45, no. 3, pp. 291–296, Mar. 2015, doi: 10.1093/jjco/hyu211.
[34] C.-W. Kao et al., “Accuracy of long-form data in the Taiwan cancer registry,” J. Formos. Med. Assoc., vol. 120, no. 11, pp. 2037–2041, Nov. 2021, doi: 10.1016/j.jfma.2021.04.022.
[35] S. Pölsterl, “scikit-survival: a library for time-to-event analysis built on top of scikit- learn,” J. Mach. Learn. Res., vol. 21, no. 1, p. 212:8747-212:8752, Jan. 2020.
[36] H. Kvamme, Ø. Borgan, and I. Scheel, “Time-to-Event Prediction with Neural Networks and Cox Regression,” J. Mach. Learn. Res., vol. 20, no. 129, pp. 1–30, 2019.
[37] D. R. Cox, “Regression Models and Life-Tables,” J. R. Stat. Soc. Ser. B Methodol., vol. 34, no. 2, pp. 187–202, 1972, doi: 10.1111/j.2517-6161.1972.tb00899.x.
[38] S. Cygu, J. Dushoff, and B. M. Bolker, “pcoxtime: Penalized Cox Proportional Hazard Model for Time-dependent Covariates,” Jun. 09, 2021, arXiv: arXiv:2102.02297. doi: 10.48550/arXiv.2102.02297.
[39] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, “Random survival forests,” Ann. Appl. Stat., vol. 2, no. 3, pp. 841–860, Sep. 2008, doi: 10.1214/08- AOAS169.
[40] G. Ridgeway, “The State of Boosting,” Comput. Sci. Stat., no. 31, pp. 172–181, 1999. [41] S. Pölsterl, N. Navab, and A. Katouzian, “Fast Training of Support Vector Machines for
Survival Analysis,” in Machine Learning and Knowledge Discovery in Databases, vol. 9285, A. Appice, P. P. Rodrigues, V. Santos Costa, J. Gama, A. Jorge, and C. Soares, Eds., in Lecture Notes in Computer Science, vol. 9285. , Cham: Springer International Publishing, 2015, pp. 243–259. doi: 10.1007/978-3-319-23525-7_15.
[42] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger, “DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network,” BMC Med. Res. Methodol., vol. 18, no. 1, p. 24, Feb. 2018, doi: 10.1186/s12874-018-0482-1.
[43] T. A. G. Kattan Michael W., Medical Risk Prediction Models: With Ties to Machine Learning. New York: Chapman and Hall/CRC, 2021. doi: 10.1201/9781138384484.
[44] H. Ishwaran and U. B. Kogalur, randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). (Dec. 06, 2023). Accessed: Mar. 01, 2024. [Online]. Available: https://cran.r- project.org/web/packages/randomForestSRC/index.html
[45] B. Ripley and W. Venables, nnet: Feed-Forward Neural Networks and Multinomial Log- Linear Models. (May 03, 2023). Accessed: Mar. 01, 2024. [Online]. Available: https://cran.r-project.org/web/packages/nnet/index.html
[46] P. C. Austin and J. P. Fine, “Practical recommendations for reporting Fine‐Gray model analyses for competing risk data,” Stat. Med., vol. 36, no. 27, pp. 4391–4400, Nov. 2017, doi: 10.1002/sim.7501.
[47] J. P. Fine and R. J. Gray, “A Proportional Hazards Model for the Subdistribution of a Competing Risk,” J. Am. Stat. Assoc., vol. 94, no. 446, pp. 496–509, Jun. 1999, doi: 10.1080/01621459.1999.10474144.
[48] H. Ishwaran, T. A. Gerds, U. B. Kogalur, R. D. Moore, S. J. Gange, and B. M. Lau, “Random survival forests for competing risks,” Biostatistics, vol. 15, no. 4, pp. 757–773, Oct. 2014, doi: 10.1093/biostatistics/kxu010.
[49] R. J. Gray, “A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk,” Ann. Stat., vol. 16, no. 3, Sep. 1988, doi: 10.1214/aos/1176350951.
[50] E. M. Biganzoli, P. Boracchi, F. Ambrogi, and E. Marubini, “Artificial neural network for the joint modelling of discrete cause-specific hazards,” Artif. Intell. Med., vol. 37, no. 2, pp. 119–130, Jun. 2006, doi: 10.1016/j.artmed.2006.01.004.
[51] E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach,” Stat. Med., vol. 17, no. 10, pp. 1169–1186, 1998, doi: 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D.
[52] H. Uno, T. Cai, L. Tian, and L. J. Wei, “Evaluating Prediction Rules for t -Year Survivors
With Censored Regression Models,” J. Am. Stat. Assoc., vol. 102, no. 478, pp. 527–537,
Jun. 2007, doi: 10.1198/016214507000000149.
[53] H. Hung and C.-T. Chiang, “Estimation methods for time-dependent AUC models with
survival data,” Can. J. Stat., vol. 38, no. 1, pp. 8–26, 2010, doi: 10.1002/cjs.10046. [54] P. J. Heagerty and Y. Zheng, “Survival Model Predictive Accuracy and ROC Curves,”
Biometrics, vol. 61, no. 1, pp. 92–105, 2005, doi: 10.1111/j.0006-341X.2005.030814.x. [55] J. Lambert and S. Chevret, “Summary measure of discrimination in survival models
based on cumulative/dynamic time-dependent ROC curves,” Stat. Methods Med. Res.,
vol. 25, no. 5, pp. 2088–2102, Oct. 2016, doi: 10.1177/0962280213515571.
[56] E. L. Kaplan and P. Meier, “Nonparametric Estimation from Incomplete Observations,”
J. Am. Stat. Assoc., vol. 53, no. 282, pp. 457–481, Jun. 1958, doi:
10.1080/01621459.1958.10501452.
[57] P. Blanche, C. Proust-Lima, L. Loubère, C. Berr, J.-F. Dartigues, and H. Jacqmin-Gadda,
“Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks,” Biometrics, vol. 71, no. 1, pp. 102–113, 2015, doi: 10.1111/biom.12232.
[58] O. O. Aalen and S. Johansen, “An Empirical Transition Matrix for Non-Homogeneous Markov Chains Based on Censored Observations,” Scand. J. Stat., vol. 5, no. 3, pp. 141– 150, 1978.
[59] E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher, “Assessment and comparison of prognostic classification schemes for survival data,” Stat. Med., vol. 18, no. 17–18, pp. 2529–2545, 1999, doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID- SIM274>3.0.CO;2-5.
[60] R. Schoop, J. Beyersmann, M. Schumacher, and H. Binder, “Quantifying the predictive accuracy of time-to-event models in the presence of competing risks,” Biom. J., vol. 53, no. 1, pp. 88–112, 2011, doi: 10.1002/bimj.201000073.
[61] E. Longato, M. Vettoretti, and B. Di Camillo, “A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models,” J. Biomed. Inform., vol. 108, p. 103496, Aug. 2020, doi: 10.1016/j.jbi.2020.103496.
[62] T. J. Pollard, A. E. W. Johnson, J. D. Raffa, and R. G. Mark, “tableone: An open source Python package for producing summary statistics for research papers,” JAMIA Open, vol. 1, no. 1, pp. 26–31, Jul. 2018, doi: 10.1093/jamiaopen/ooy012.
[63] C. Davidson-Pilon, “lifelines: survival analysis in Python,” J. Open Source Softw., vol. 4, no. 40, p. 1317, Aug. 2019, doi: 10.21105/joss.01317.
[64] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Mach. Learn. PYTHON.
[65] H. T. Kim, “Cumulative Incidence in Competing Risks Data and Competing Risks Regression Analysis,” Clin. Cancer Res., vol. 13, no. 2, pp. 559–565, Jan. 2007, doi:10.1158/1078-0432.CCR-06-1210.
[66] J. J. Dignam and M. N. Kocherginsky, “Choice and Interpretation of Statistical Tests
Used When Competing Risks Are Present,” J. Clin. Oncol., vol. 26, no. 24, pp. 4027–
4034, Aug. 2008, doi: 10.1200/JCO.2007.12.9866.
[67] S. D. Berry, L. Ngo, E. J. Samelson, and D. P. Kiel, “Competing Risk of Death: An
Important Consideration in Studies of Older Adults,” J. Am. Geriatr. Soc., vol. 58, no. 4,
pp. 783–787, 2010, doi: 10.1111/j.1532-5415.2010.02767.x.
[68] M. T. Koller, H. Raatz, E. W. Steyerberg, and M. Wolbers, “Competing risks and the
clinical community: irrelevance or ignorance?,” Stat. Med., vol. 31, no. 11–12, pp. 1089–
1097, May 2012, doi: 10.1002/sim.4384.
[69] K. C. Cain et al., “Bias Due to Left Truncation and Left Censoring in Longitudinal
Studies of Developmental and Disease Processes,” Am. J. Epidemiol., vol. 173, no. 9, pp.
1078–1084, May 2011, doi: 10.1093/aje/kwq481.
[70] Y. Jin, T. G. N. Ton, D. Incerti, and S. Hu, “Left truncation in linked data: A practical
guide to understanding left truncation and applying it using SAS and R,” Pharm. Stat.,
vol. 22, no. 1, pp. 194–204, 2023, doi: 10.1002/pst.2257.
[71] Z. Gong, P. Zhong, and W. Hu, “Diversity in Machine Learning,” IEEE Access, vol. 7,
pp. 64323–64350, 2019, doi: 10.1109/ACCESS.2019.2917620.
[72] J. Wang et al., “Testing the generalizability and effectiveness of deep learning models
among clinics: sperm detection as a pilot study,” Reprod. Biol. Endocrinol., vol. 22, no. 1, p. 59, May 2024, doi: 10.1186/s12958-024-01232-8.
指導教授 許文錦 曾意儒 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明