博碩士論文 111521152 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.133.116.38
姓名 曾崇義(Chong-Yi Zeng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 石墨烯量子點陣列的熱電性質
(Thermoelectric Properties of Graphene Quantum Dots Array)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們從理論上研究了具有週期性空缺的鋸齒型石墨烯納米帶(ZGNRs)的熱電性質,這些空缺起到反量子點的作用。具有週期性空缺的 ZGNRs 可作為石墨烯量子點陣列(GQDAs)。這些 GQDAs 能夠產生亞能帶和能隙。我們研究了不同金屬電極(包括銅、金、鉑、鈀和鈦)對 GQDAs 熱電性質的影響包括線接觸和面接觸。
我們發現,在室溫下,當金屬電極在扶手型邊緣進行線接觸時,功率因子可以達到一維系統理論限制的 76%。在這種情況下,GQDAs 展示出串聯式耦合量子點(SCQDs)的特性。相反,當金屬電極在鋸齒邊緣進行接觸時,GQDAs 表現出類似於平行量子點的特性。此外,當金屬電極與具有週期性空缺的 ZGNRs 表面接觸時,我們的分析展示了傳輸係數中觀察到的分子般的傳輸性質。
摘要(英) In this thesis, we have undertaken a theoretical exploration of the thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) with periodic vacancies, serving as anti-quantum dots. These ZGNRs, characterized by periodic vacancies, effectively operate as graphene quantum dot arrays (GQDAs), capable of introducing subbands and band gaps. We investigate the impact of line and surface contacts with various metal electrodes (including copper, gold, platinum, palladium, and titanium) on the thermoelectric properties of these GQDAs.
Our findings reveal that at room temperature, the power factor can reach up to 76% of the theoretical limit for one-dimensional systems when metal electrodes establish line contact at the armchair edges. Under such circumstances, GQDAs demonstrate features akin to serially coupled quantum dots (SCQDs). Conversely, when metal electrodes make contact at the zigzag edges, GQDAs exhibit characteristics reminiscent of parallel quantum dots. Furthermore, our analysis showcases the molecular-like transport properties observed in the transmission coefficient when metal electrodes are surface-contacted with ZGNRs featuring periodic vacancies.
關鍵字(中) ★ 石墨烯
★ 石墨烯奈米帶
★ 量子點
★ 熱電效應
關鍵字(英) ★ Graphene
★ Graphene nanoribbons
★ Quantum Dots
★ Thermoelectric coefficient
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、 導論 1
1-1前言 1
1-2石墨烯 (Graphene) 2
1-2.1石墨烯奈米帶 (Graphene Nanoribbons) 4
1-3 石墨烯量子點陣列 (Graphene Quantum Dots Array, GQDAs) 7
1-4 研究動機 7
第二章、 研究方法與系統模型 8
2-1帶有週期性空缺的石墨烯量子點陣列 8
2-2 熱電效應(Thermoelectric effect) 10
2-3 緊束縛模型(Tight-binding model) 12
2-4電子傳輸係數與熱電係數 13
2-5 接觸電極(Contact electrodes) 16
第三章、 模擬與分析 17
3-1 空缺對GQDAs的影響 17
3-2 空缺對熱電特性的影響 19
3-3 線接觸在扶手形邊緣上之熱電特性 20
3-4 線接觸在鋸齒型邊緣上之熱電特性 25
3-5 面接觸金屬電極之熱電特性 27
第四章、 結論 32
參考資料 33
參考文獻 [1] Wang, M., Bi, C., Li, L et al, Thermoelectric Seebeck effect in oxide-based resistive switching memory, Nat Commun . 5, 4598 (2014).
[2] Jin, W., Liu, L., Yang, T et al, Exploring Peltier effect in organic thermoelectric films, Nat Commun . 9, 3586 (2018).
[3] Balandin, A. Thermal properties of graphene and nanostructured carbon materials, Nature Mater. 10, 569–581 (2011).
[4] K. S.,Novoselov et al. Electric Field Effect in Atomically Thin Carbon Films, Science, 306,666-669 (2004).
[5] Gui, Gui et al, Band structure engineering of graphene by strain: First-principles calculations, Phys. Rev.B. 80,235431(2008).

[6] Gmitra, M. and Konschuh, S. and Ertler, C. and Ambrosch-Draxl, C. and Fabian, J, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B. 80, 235431(2009).
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene, Rev. Mod. Phys. 81, 109(2009).
[8] Sang M, Shin J, Kim K, Yu KJ, Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications, Nanomaterials. 9,374(2019).
[9] Balandin, A, Thermal properties of graphene and nanostructured carbon materials. Nature Mater, 10,569–581(2011).
[10] Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris,"Graphene nano-ribbon electronics, Physica E: Low-dimensional Systems and Nanostructures, 40, 228 (2007).
[11] Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, Koichi Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, Journal of the Physical Society of Japan. 65, 1920-1923 (1996).
[12] K. Wakabayashi, K Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[13] P.F. Yuan et al, Electronic properties of one-dimensional graphene quantum-dot arrays, Org. Electron.15 (2014)
[14] H. Sevinçli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B.81, 113401(2010).
[15] Liang G, Neophytou N, Lundstrom MS, Nikonov DE, Contact effects in graphene nanoribbon transistors, Nano Lett.8(7):1819-24(2008).
[16] David M. T. Kuo and Y. C. Chang, Contact effects on the thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[17] Brian C Sales, Novel thermoelectric materials, Curr. Opin. Solid State Mater. Sci.(1997).
[18] Nakpathomkun, Natthapon et al, Thermoelectric efficiency at maximum power in low-dimensionalsystems, " PhysRev.B.82,235428(2010).
[19] Yang, Kaike and Chen, Yuanping et al, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev.86,045425(2012).
[20] Chen Y, Jayasekera T, Calzolari A, Kim KW, Nardelli MB, Thermoelectric properties of graphene nanoribbons, junctions and superlattices, J Phys Condens Matter. 22(37):372202(2010).
[21] Du, X., Skachko, I., Barker, A et al, Approaching ballistic transport in suspended graphene, Nature Nanotech .3, 491–495 (2008).
[22] Pedersen, Thomas and Flindt. et al, Graphene Antidot Lattices: Designed Defects and Spin Qubits, Physical review letters,100,136804(2008).
[23] Ying-Tao Zhang et al, Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays, J. Phys.: Condens. Matter. 22,315304(2010).
[24] JORDAN, F. , The Thomson and Peltier Effects, Nature. 86,380(1911).
[25] Goldsmid, H. J., Introduction To Thermoelectricity, Goldsmid,H. J., Eds.; Springer, Berlin. 7, 99−111(2010).
[26] H. Haug and A. P. Jauho., Quantum kinetics in transport and optics of semiconductors, Springer, Heidelberg(1996).
[27] David M. T. Kuo., Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays, AIP Advances. 4,045222(2020).
[28] David M. T. Kuo. Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons, Jpn. J. Appl. Phys. 61,075001(2022).
[29] Yamamoto et al,Universal Features of Quantized Thermal Conductance of Carbon Nanotubes, Phys. Rev. Lett. 92,075502(2004).
[30] Barraza-Lopez et al, Effects of Metallic Contacts on Electron Transport through Graphene, Phys. Rev. Lett. 104,076807(2010).
[31] Ma, Bo et al, Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study, Journal of Applied Physics. 115(18), 183708-1837088(2014).
[32] Gong C et al, Realistic Metal-Graphene contact structures, ACS Nano. 8,642(2014).
[33] Lee G and Cho K, Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation, Phys. Rev. B . 79, 165440(2009).
[34] Matsuda Y, DengWQ and Goddard IIIWA, Contact Resistance for "End-Contacted" Metal-Graphene and Metal- Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114,17845(2010).
[35] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014)mo.
[36] Gao Q and Guo J, Role of chemical termination in edge contact to graphene, APL Mater. 2, 056105(2014).
[37]Golizadeh-Mojarad et al, Effect of contact induced states on minimum conductivity in graphene, Phys. Rev. B. 79,085410.(2009).
[38] Chu T and Chen Z, Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene, ACS Nano. 8, 3584(2014).
[39] David M. T. Kuo and Chang Y C, Thermoelectric and thermal rectification properties of quantum dot junctions, Phys. Rev. B. 81, 205321(2010).
[40] David M. T. Kuo ,Shiau S Y and Chang Y C , Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system.Phys, Rev. B. 84, 245303(2011).
[41] David M. T. Kuo, Chen C C and Chang Y C, Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy, Phys. Rev. B . 95,075432(2017).
指導教授 郭明庭 審核日期 2024-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明