參考文獻 |
[1] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
[2] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999).
[3] Y. G. Gurevich and G. N. Logvinov. Physics of thermoelectric cooling. Semicond. Sci. Technol. 20, R57 (2005).
[4] E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology", IEEE, 2010 12th Biennial Baltic, Tallinn Electronics Conference, Tallinn, Estonia, (2010).
[5] Akram I. Boukai1, Yuri Bunimovich1, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A. Goddard III1 & James R. Heath1, "Silicon nanowires as efficient thermoelectric materials", Nature vol. 451(7175), (2008).
[6] Geim, A. K. & Novoselov, K. S. "The rise of graphene". Nature Mater. 6, 183–191 (2007).
[7] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and Roman Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470 (2010).
[8] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[9] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev. B 73, 235411 (2006).
[10] K. Wakabayashi, K Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[11] P.F. Yuan et al. Electronic properties of one-dimensional graphene quantum-dot arrays. Org. Electron.15. (2014).
[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).
[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).
[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).
[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).
[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).
[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).
[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).
[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).
[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).
[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).
[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).
[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).
[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).
[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).
[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).
[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).
[22] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014).
[23] I-Ju Chen et al. Thermoelectric Power Factor Limit of a 1D Nanowire. Phys. Rev. Lett. 120, 177703. (2018).
[24] Q. Gao, and J. Guo, Role of chemical termination in edge contact to graphene. APL Mater. 2, 056105 (2014). |