博碩士論文 111521006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.227.21.213
姓名 李俊廷(Chun-Ting Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有周期性空缺的鋸齒狀石墨烯奈米帶的熱電效應
(Thermoelectric Effects of Zigzag Graphene Nanoribbons with Periodic Vacancies.)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 儘管鋸齒狀石墨烯納米帶(ZGNRs)通常呈現金屬相,但具有周期性空缺的 ZGNRs導致了亞能帶和能隙的產生。因此,探索它們的熱電性質變得至關重要。利用緊束縛模型和 Green′s 函數技術,我們從理論上研究了具有周期性空缺的 ZGNRs 的熱電效應。空缺的大小和位置影響了亞能帶的寬度和能隙的大小,為優化與金屬電極的接觸性提供了途徑。在室溫下,具有周期性小空缺的 ZGNRs 的最大功率因數(PF)可達到一維系統理論限制值的84%。
摘要(英) Although zigzag graphene nanoribbons (ZGNRs) typically exhibit metallic phases, those with periodic vacancies introduce subbands and band gaps. Hence, exploring their thermoelectric properties becomes imperative. Utilizing the tight-binding model and Green’s function technique, we theoretically investigate the thermoelectric effects of ZGNRs featuring periodic vacancies. The widths of subbands and magnitudes of gaps are influenced by the sizes and positions of vacancies, offering avenues for optimizing contact properties with metallic electrodes. At room temperature, the maximum power factor (PF) achievable by ZGNRs with periodic vacancies can reach 84% of the theoretical limit for one-dimensional systems.
關鍵字(中) ★ 石墨烯
★ 石墨烯奈米帶
★ 熱電效應
關鍵字(英) ★ Graphene
★ Graphene Nanoribbons
★ Thermoelectric Effects
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、導論 1
1-1前言 1
1-2 熱電效應 2
1-3 石墨稀 4
1-4 Bottom-up Approach…………………………………………………………………………………..5
1-5 研究動機 5
第二章、系統模型 6
2-1 石墨烯奈米帶 6
2-2 具週期性空缺之鋸齒型石墨烯奈米帶 8
2-3系統電子總能 9
2-4 熱電係數 10
2-5 電子熱導(ke)與聲子熱導(kph) 12
第三章、熱電特性的模擬與分析 14
3-1 Anti-dot 14
3-2空缺對熱電特性的影響 16
3-3不同電極材料線接觸在Armchair edge對M-GQDA的影響 17
3-4 不同電極材料線接觸在Zigzag edge對M-GQDA的影響 20
3-5 金屬電極面接觸在M-GQDA上對熱電特性的影響 24
第四章、結論 28
參考文獻 29
參考文獻 [1] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
[2] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999).

[3] Y. G. Gurevich and G. N. Logvinov. Physics of thermoelectric cooling. Semicond. Sci. Technol. 20, R57 (2005).

[4] E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology", IEEE, 2010 12th Biennial Baltic, Tallinn Electronics Conference, Tallinn, Estonia, (2010).

[5] Akram I. Boukai1, Yuri Bunimovich1, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A. Goddard III1 & James R. Heath1, "Silicon nanowires as efficient thermoelectric materials", Nature vol. 451(7175), (2008).

[6] Geim, A. K. & Novoselov, K. S. "The rise of graphene". Nature Mater. 6, 183–191 (2007).

[7] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and Roman Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470 (2010).

[8] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).

[9] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev. B 73, 235411 (2006).
[10] K. Wakabayashi, K Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[11] P.F. Yuan et al. Electronic properties of one-dimensional graphene quantum-dot arrays. Org. Electron.15. (2014).

[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).

[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).

[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).

[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).

[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).

[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).

[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).

[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).

[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).

[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).

[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).

[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).

[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).

[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).

[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).

[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).

[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).

[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).

[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).

[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).

[22] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014).

[23] I-Ju Chen et al. Thermoelectric Power Factor Limit of a 1D Nanowire. Phys. Rev. Lett. 120, 177703. (2018).

[24] Q. Gao, and J. Guo, Role of chemical termination in edge contact to graphene. APL Mater. 2, 056105 (2014).
指導教授 郭明庭 審核日期 2024-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明