博碩士論文 110521132 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.128.168.136
姓名 方玅婷(Miao-Ting Fang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於5G系統毫米波頻段升降頻模組及使用連續模式技術高功率放大器之研製
(Development of up/down frequency conversion module and high power amplifiers using continuous mode technique for 5G millimeter wave systems)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 本論文研究方向為毫米波射頻升降模組研製與連續模式寬頻高功率放大器。射頻升降模組採用商用IC集成至印刷電路板上,PCB板材使用RO-FR4四層複合電路板實現;功率放大器採用穩懋0.15-µm InGaAs pHEMT 與0.25-µm GaN/SiC HEMT製程分別進行Ka頻段J類連續模式功率放大器,X頻段F類連續模式放大器之設計。
第二章為砷化鎵Ka頻段功率放大器,輸出匹配網路採用J類連續模式,完成基頻與二倍頻的匹配達到高效率與寬頻之性能,輸入和級間匹配則以最大功率作最大輸出匹配。量測結果顯示最佳傳輸增益為 14.9 dB,3dB 頻寬為 24.5 – 30.2 GHz;於大訊號量測下,飽和輸出功率為25.8 dBm,功率附加效率最高可達30.2 %;於26 GHz下64 QAM 且1.6 MHz 訊號頻寬之調變訊號量測下,於OP1dB回退9 dB時,平均輸出功率為16 dBm,加入 DPD 前後,ACPR 左通道與右通道為 -25.4 dBc 與 -26.5 dBc 降至 -40.6 dBc 與 -40.2 dBc,在 1.6 MHz 頻寬的量測,加入 DPD 前後EVM 為 8.4% 降至 2.1%。晶片面積為1.5 (1.5 × 1) mm2。
第三章為0.25-µm GaN 製程於 X 頻帶之F類連續模式放大器,透過偏壓挑選的方式,改善AM-AM 的線性度,電路沿用第二章連續模式,採用F類匹配達到寬頻且高效率之功率放大器。量測結果顯示最大傳輸增益為 18.7 dB,3dB 頻寬為8 - 11.4 GHz;於大訊號量測下,飽和輸出功率為32.8 dBm,1-dB增益壓縮點之輸出功率為31.4 dBm 與最大功率附加效率達 26.7 %,晶片面積為 2.5 (2.5 × 1) mm2。
第四章設計Ka頻段之射頻收發模組採用AWMF-0188晶片集成至印刷電路板上,模組中不僅有發射及接收模式外,還包含一旁路模式,有高度整合的優勢。發射旁路增益最大值為7.4 dB,接收旁路增益最大值為7.6 dB。發射模式下於射頻端3 dB頻寬從24 - 30 GHz,於24 GHz時轉換增益為11.1 dB,OP1dB為9.3 dBm;接收模式下,中頻輸出為4 GHz時最佳轉換增益為 8.3 dB,且雜訊指數為17.9 dB,模組面積為44.6 × 44 mm2。
摘要(英) The thesis presents a Ka-band Continuous J power amplifier in 0.15-µm InGaAs pHEMT process and a X-band Continuous F power amplifier in 0.25-µm GaN/SiC HEMT process. The RF transceiver modules integrate commercial ICs onto printed circuit boards, with PCB materials utilizing RO-FR4 four-layer composite circuit boards.
The first chip presents a Ka-band two-stage PA in GaAs process. The high efficiency and broadband performances are achieved by using continuous J that is matched for fundamental and second harmonic impedances. The measured maximum small-signal gain is 14.9 dB with a 1-dB bandwidth from 24.5 to 30.2 GHz, an output saturated power of 25.8 dBm, an output 1-dB compression point (OP1dB) of 25.6 dBm, and a peak PAE of 30.2 %. The chip size is 1.08mm2.
The second chip presents a X-band broadband high efficiency power amplifier in GaN/SiC process. According to the analysis of large signal power gain, the appropriate bias voltage is selected to improve the AM-AM linearity. The high-efficiency and broadband performances are achieved by using continuous Class-F mode for the fundamental to third harmonics output matching network. The measured maximum small-signal gain is 18.7 dB with a 1-dB bandwidth from 8 to 11.4 GHz, an output saturated power of 32.8 dBm, an output 1-dB compression point (OP1dB) of 31.4 dBm, and a peak PAE of 26.7 %. The chip size is 2.5 mm2.
Chapter 4 presents a Ka-band up/down frequency conversion module. The AWMF-0188 chip is integrated onto the printed circuit board. The module not only includes transmit and receive modes but also incorporates a bypass mode, offering highly integrated advantages. The maximum transmit bypass gain is 7.4 dB, and the maximum receive bypass gain is 7.6 dB. In transmit mode, the 3-dB bandwidth at the RF end ranges from 24 to 30 GHz. At 24 GHz, the conversion gain is 11.1 dB. In receive mode, the optimal conversion gain is 8.3 dB when the intermediate frequency output is at 4 GHz and a noise figure of 17.9 dB. The module area is 44.6 × 44 mm2.
關鍵字(中) ★ 功率放大器 關鍵字(英)
論文目次 摘要 V
Abstract VI
致謝 VIII
目錄 X
圖目錄 XII
表目錄 XVIII
第一章 緒論 1
1.1研究動機及背景 1
1.2相關研究發展現況 1
1.3論文貢獻 2
1.4論文架構 3
第二章 應用連續J類技術於Ka頻段砷化鎵高功率放大器 4
2.1砷化鎵放大器研究現況 4
2.1.1 設計目標 6
2.2 功率放大器簡介 7
2.2.1 連續模式技術簡介 9
2.2.2共振腔的等效阻抗 11
2.3電路架構與設計 12
2.3.1 電晶體偏壓選擇 13
2.3.2電晶體尺寸分析 17
2.3.3輸出匹配設計 21
2.3.4級間及輸入匹配設計 27
2.3.5穩定度確認 28
2.4量測結果 29
2.5問題與討論 37
2.5.1 S參數除錯 38
2.5.2大訊號除錯 42
2.6總結 44
第三章 應用連續F類技術於X頻段氮化鎵高功率放大器 48
3.1氮化鎵功率放大器研究現況 48
3.1.1設計目標 48
3.2連續模式F類簡介 49
3.3電路架構與設計 53
3.3.1電晶體特性評估 53
3.3.2電晶體穩定電路 59
3.3.3輸出匹配設計 61
3.3.4穩定度確認 67
3.4量測結果 68
3.5總結 75
第四章 應用於第五代行動通訊系統毫米波頻段升降頻模組之研製 77
4.1簡介 77
4.1.1升降頻轉換晶片簡介 79
4.1.2巴倫 ( Balun ) 設計簡介 81
4.1.3串列周邊介面 (SPI Interface) 簡介 85
4.2混成電路(PCB)板材介紹 86
4.2.1RO-FR4複合四層板介紹 86
4.3模組設計與分析 87
4.3.1毫米波電路設計考量 87
4.4電路模組量測分析 93
4.4.1GCPW測試傳輸線量測分析 95
4.4.2升降頻模組量測分析 97
4.4.3 與LO模組整合量測分析 107
4.4.4 調變量測分析 110
4.5總結 117
第五章 結論與未來展望 119
參考文獻 121
參考文獻 [1] W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Commun. Mag., vol. 52, no. 2, pp. 106-113, Feb. 2014.
[2] L.-H. Huang and H.-K. Chiou, "An ultra-compact 14.9-W X-Band GaN MMIC power amplifier, "in Asia-Pacific Microw. Conf., Dec. 2020, pp. 257-259.
[3] J. C. Mayeda, D. Y. C. Lie and J. Lopez, "A high efficiency fully-monolithic 2-stage C-band GaN power amplifier for 5G microcell applications," IEEE Trans. Wireless and Microw. Circuits and Syst., Waco, TX, USA, Apr. 2018, pp. 1-4.
[4] X. Lu, V. Petrov, D. Moltchanov, S. Andreev, T. Mahmoodi and M. Dohler, "5G-U: conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT," IEEE Commun. Mag., vol. 57, no. 7, pp. 92-98, Jul. 2019.
[5] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-Band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Trans. Circuits Syst. I, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[6] B.-W. Huang, Z.-H. Fu and K.-Y. Lin, "A millimeter-wave ultra-wide band power amplifier in 0.15-μm GaAs pHEMT for 5G communication," in Asia-Pacific Microw. Conf., Nov. 2022, pp. 97-99.
[7] S.-J. Fe, S.-H. Lai and H.-Y. Chang, "A 0.5-W 26-31 GHz power amplifier using pre-matching technique in 0.15-μm pHEMT process," in IEEE Trans. Radio Freq. Integr. Techn., Aug. 2021, pp. 1-2.
[8] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz compact pHEMT power amplifier using coupled-line based MCCR matching technique," in IEEE MTT-S Int Microw. Symp. Dig., Aug. 2020, pp. 956-959.
[9] Y.-C. Hsieh, G.-J. Lin, Z.-M. Tsai and T.-H. Chen, "Design and analysis of a high linearity full Ka-band stacked-FET power amplifier using 0.15- μ m GaAs pHEMT process," in IEEE Microw. Compon. Lett. Technol. Lett., vol. 34, no. 4, pp. 427-430, Apr. 2024.
[10] A. A. Babenko, G. Lasser and Z. Popović, "0.01–22-GHz feedback-stabilized single-supply GaAs cascode distributed amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1291-1294, Dec. 2021.
[11] J. J. Komiak, K. Chu and P. C. Chao, "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and No FP technology,"in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2011, pp. 1-4.
[12] U. Schmid et al., "Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications," IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3043-3051, Aug. 2013.
[13] J.-H. Tsai and T.-W. Huang, “A 38–46 GHz MMIC Doherty power amplifier using post-distortion linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 388-390, May 2007.
[14] M. Fresina, "Trends in GaAs HBTs for wireless and RF," 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Oct. 2011, pp. 150-153.
[15] Y. Tkachenko, A. Klimashov, C. Wei, Y. Zhao and D. Bartle, "Enhancement mode pHEMT for single supply high efficiency power amplifiers," 1999 29th European Microwave Conference, Oct. 1999, pp. 259-262.
[16] 穩懋 PP15-22 0.15μm InGaAs pHEMT Power Device Layout Design Manual
[17] D. P. Nguyen and A.-V. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 516-518, Jul. 2016.
[18] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2018, pp. 808-811.
[19] D. P. Nguyen, B. L. Pham and A.-V. Pham, "A compact Ka-band integrated Doherty amplifier with reconfigurable input network," IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 205-215, Jan. 2019.
[20] D. P. Nguyen, X.-T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A wideband high efficiency Ka-band MMIC power amplifier for 5G wireless communications," IEEE Int. Symp. on Circuits and Syst., May. 2019, pp. 1-5.
[21] V. Qunaj and P. Reynaert, "Compact transformer-based matching structures for Ka-band power amplifiers," in Asia-Pacific Microw. Conf., Dec. 2019, pp. 914-916.
[22] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz compact pHEMT power amplifier using coupled-line based MCCR matching technique," in IEEE MTT-S Int Microw. Symp. Dig., Aug. 2020, pp. 956-959.
[23] K.-J. Chuang, K. P. Tang, Y.-H. Lin, T.-H. Chen, C.-S. Wu and T.-W. Huang, "An efficient and linear 24.4dBm Ka-band GaAs power amplifier for 5G communication," in IEEE Trans. Radio Freq. Integr. Techn., Aug. 2021, pp. 1-3.
[24] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[25] 邱煥凱˙林貴城,ADS應用於射頻功率放大器設計與模擬,國立清華大學出版社,民國103年。
[26] S. C. Cripps, RF Power Amplifiers for Wireless Communication, 2nd. Norwell, MA: Artech House, 2006, ch. 2.
[27] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: The "Continuous" mode of operation," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct. 2012, pp. 1-4.
[28] F. Giannini and L. Scucchia, "A complete class of harmonic matching networks: synthesis and application," IEEE Trans. Microw. Theory Techn., vol. 57, no. 3, pp. 612-619, Mar. 2009.
[29] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665-667, Oct. 2009.
[30] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: the "Continuous" mode of operation," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct. 2012, pp. 1-4.
[31] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated output matching networks for Class–J/J−1 power amplifiers," IEEE Trans. Circuits Syst. II, vol. 66, no. 8, pp.2921-2934, Aug. 2019.
[32] A. Alizadeh and A. Medi, "Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor," IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 3024-3033, Aug. 2017.
[33] A. Alizadeh, M. Frounchi and A. Medi, "Waveform engineering at gate node of Class-J power amplifiers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2409-2417, Jul. 2017.
[34] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated output matching networks for Class–J/J−1 power amplifiers," IEEE Trans. Circuits Syst. II, vol. 66, no. 8, pp. 2921-2934, Aug. 2019.
[35] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, "Integrated design of a Class-J power amplifier," IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1639-1648, Apr. 2013.
[36] S. Park, J. -L. Woo, U. Kim and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking," IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1174-1185, Apr. 2015.
[37] A. Sarkar and B. Floyd, "A 28-GHz class-J power amplifier with 18-dBm output power and 35% peak PAE in 120-nm SiGe BiCMOS," 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems, Jan. 2014, pp. 71-73.
[38] T. Hanna, N. Deltimple and S. Frégonèse, "A wideband highly efficient class-J integrated power amplifier for 5G applications," 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), Jun. 2017, pp. 325-328.
[39] D. P. Nguyen, T. Pham and A. -V. Pham, "A 28-GHz symmetrical Doherty power amplifier using stacked-FET cells," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2628-2637, Jun. 2018.
[40] D. P. Nguyen, J. Curtis and A. -V. Pham, "A Doherty amplifier with modified load modulation scheme based on load–pull data," IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 227-236, Jan. 2018.
[41] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[42] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[43] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1764-1783, Jun. 2012.
[44] M. van Heijningen et al., "Ka-band AlGaN/GaN HEMT high power and driver amplifier MMICs," European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, Oct. 2005, pp. 237-240.
[45] Bon-Hyun Ku, Sang-Hyun Baek and Songcheol Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2008, pp. 523-526.
[46] Y.-J. E. Chen, L.-Y. Yang, and W.-C. Yeh, “An integrated wideband power amplifier for cognitive radio,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 10, pp. 2053–2058, Oct. 2007.
[47] M. Akbarpour, M. Helaoui, and F. M. Ghannouchi, “A transformer-less load-modulated (TLLM) architecture for efficient wideband poweramplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp.2863–2874, Sep. 2012.
[48] R. Darraji, F. M. Ghannouchi, and M. Healoui, “Mitigation of band-width limitation in wireless Doherty amplifiers with substantial band-width enhancement using digital techniques,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2875–2885, Sep. 2012.
[49] J. S. Moon et al., "High efficiency X-band class-E GaN MMIC high-power amplifiers," 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Jan. 2012, pp. 9-12.
[50] T. Senju, K. Takagi and H. Kimura, "A 2 W 45 % PAE X-band GaN HEMT class-F MMIC power amplifier," in Asia-Pacific Microw. Conf., Nov. 2018, pp. 956-958.
[51] L.-H. Huang and H. -K. Chiou, "An ultra-compact 14.9-W X-band GaN MMIC power amplifier," in Asia-Pacific Microw. Conf., Dec. 2020, pp. 257-259.
[52] S. H. Vardhan, D. Pathak, R. Ramalingam, M. Mehnde and A. Dutta, "Microstrip radial stub based 4W GaN MMIC power amplifier for X-band radar applications," 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Feb. 2021, pp. 1-4.
[53] L. Kang, W. Chen and A. Wu, "A reconfigurable S-/X-Band GaN MMIC power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 547-550, Jun. 2022.
[54] H. Park, H. Nam, K. Choi, J. Kim and Y. Kwon, "A 6–18-GHz GaN reactively matched distributed power amplifier using simplified bias network and reduced thermal coupling," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2638-2648, Jun. 2018.
[55] X. Sun, X. Zhu, Y. Wang, P. -L. Chi and T. Yang, "A 2W 9.5-16.5 GHz GaN power amplifier with 30% PAE using transformer-based output matching network," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2023, pp. 319-322.
[56] Jee, J. Moon, J. Kim, J. Son and B. Kim, "Switching behavior of class-E power amplifier and its operation above maximum frequency," IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 89-98, Jan. 2012.
[57] B.-H. Ku, S.-H. Baek and S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[58] A. K. Kumaran, M. Pashaeifar, M. D’Avino, L. C. N. de Vreede and M. S. Alavi, "On-chip output stage design for a continuous class-F power amplifier," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), May 2021, pp. 1-5.
[59] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1952-1963, Jun. 2012.
[60] V. Carrubba et al., "Exploring the design space for broadband pas using the novel “continuous inverse class-F mode”," 2011 41st European Microwave Conference, Manchester, Oct. 2011, pp. 333-336.
[61] V. Carrubba et al., "The continuous inverse class-F mode with resistive second-harmonic impedance," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1928-1936, Jun. 2012.
[62] K. Chen and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class- F−1/F mode transferring," IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4107-4116, Dec. 2012.
[63] X. Sun, X. Zhu, Y. Wang, P.-L. Chi and T. Yang, "A 2W 9.5-16.5 GHz GaN power amplifier with 30% PAE using transformer-based output matching network," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2023, pp. 319-322.
[64] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[65] V. Puyal et al., "A broad-band 55-nm BiCMOS T/R switch for mmW 5G small cell access point," 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Jun. 2016, pp. 1-4.
[66] https://www.anokiwave.com/products/awmf-0188/index.html.
[67] https://www.analog.com/en/products/admv1013.html.
[68] https://www.analog.com/en/index.html.
[69] https://www.analog.com/en/products/admv1014.html.
[70] https://www.analog.com/en/products/hmc572lc5.html.
[71] https://www.st.com/en/wireless-connectivity/bal-uwb-01e3.html.
[72] M. Grady, J. M. Kovitz, A. Iancovici and Y. Borenstein, "Improved bandwidth using a 3D Printed quasi-ideal grounded coplanar waveguide transmission line," 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Apr. 2022, pp. 1-4.
[73] W. Deng, R. Wu, Z. Chen, M. Ding, H. Jia and B. Chi, "A 35-GHz TX and RX front end with high TX output power for Ka-band FMCW phased-array radar transceivers in CMOS technology," in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 10, pp. 2089-2098, Oct. 2020.
[74] Y. Wang et al., "A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249-1269, May 2020.
[75] H. .-C. Park et al., "4.1 A 39GHz-band CMOS 16-Channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2020, pp. 76-78.
[76] H.-T. Kim et al., "A 28GHz CMOS direct conversion transceiver with packaged antenna arrays for 5G cellular system," in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2017, pp. 69-72.
[77] Y. Wang, H.-T. Hsu, A. Desai and Y. -F. Tsao, "Design of a compact RF front-end transceiver module for 5G new-radio applications," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-9, 2023.
[78] J. Pang et al., "A 28-GHz CMOS phased-array transceiver based on LO phase-shifting architecture with gain invariant phase tuning for 5G new radio," IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1228-1242, May 2019.
[79] J. Zhang et al., "An ultra-compact bidirectional Ka-band front-end module with 3.8-dB NF and 13.5-dBm OP1 dB," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 1, pp. 70-73, Jan. 2023.
[80] F. Quadrelli et al., "A broadband 22–31-GHz bidirectional image-reject up/down converter module in 28-nm CMOS for 5G communications," IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 1968-1981, Jul. 2022.
[81] Z. Luo, H. Chen, W. Che and Q. Xue, "Study of 28 GHz transceiver module integrated with LO source for 5G mmWave communication," 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Jul. 2020, pp. 1-3.
[82] Yinqiao Li, Le Hu, Zheng Xu and Jianming Zhou, "A Ka-band transceiver module based on LTCC technology," 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Aug. 2015, pp. 600-603.
[83] Dong-Wuk Park, Gyoung-Hun Gwag, Hyuk-Jun Oh, Ik-mo Park and Yun-Seong Eo, "28 GHz RF transceiver module for 5G beam-forming system," in Asia-Pacific Microw. Conf., Dec. 2016, pp. 1-4.
指導教授 張 鴻 埜(Hong-Yeh Chang) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明